Last modified by Xiaoling on 2025/05/05 08:51

From version 102.1
edited by Xiaoling
on 2025/05/05 08:51
Change comment: There is no comment for this version
To version 35.2
edited by Xiaoling
on 2022/10/20 09:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  
6 6  
7 -= 1. Join process page check =
7 += 1. OTAA Join Process Debug =
8 8  
9 9  
10 10  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
... ... @@ -11,78 +11,77 @@
11 11  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
12 12  
13 13  * End node console to show the Join freuqency and DR. (If possible)
14 -
15 15  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible)
16 -
17 17  * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible)
18 -
19 19  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
20 -
21 21  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
22 22  
19 +
20 +
23 23  (% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
24 24  
25 25  * If the device is sending join request to server?
26 -
27 27  * What frequency the device is sending?
28 28  
29 -[[image:image-20240129142147-2.png||height="736" width="964"]]
26 +[[image:image-20220526164956-15.png]]
30 30  
31 -Console Output from End device to see the transmit frequency.
28 +Console Output from End device to see the transmit frequency
32 32  
33 33  
31 +
34 34  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
35 35  
36 36  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
37 -
38 38  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
39 39  
40 -[[image:image-20240129151608-6.jpeg||height="725" width="1256"]]
37 +[[image:image-20220526163608-2.png]]
41 41  
42 42  Console Output from Gateway to see packets between end node and server.
43 43  
44 44  
45 -(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
46 46  
47 -* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
43 +(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
48 48  
49 -* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
50 -
45 +* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
46 +* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
51 51  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
52 52  
53 -[[image:image-20240129150821-5.jpeg||height="522" width="1264"]]
49 +[[image:image-20220526163633-3.png]]
54 54  
55 -The Traffic for the End node in the server, use TTN as example.
51 +The Traffic for the End node in the server, use TTN as example
56 56  
57 57  
54 +
58 58  (% style="color:blue" %)**4. Data Page in LoRaWAN server**
59 59  
60 60  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
61 61  
62 -[[image:image-20240129142557-3.png||height="488" width="1267"]]
59 +[[image:image-20220526163704-4.png]]
63 63  
64 64  The data for the end device set in server
65 65  
66 -[[image:image-20240129142631-4.png||height="637" width="1256"]]
67 67  
68 -Check if OTAA Keys match the keys in device.
64 +[[image:image-20220526163732-5.png]]
69 69  
66 +Check if OTAA Keys match the keys in device
70 70  
68 +
69 +
71 71  = 2. Notice of US915/CN470/AU915 Frequency band =
72 72  
73 73  
74 74  (((
75 -If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
74 +If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
76 76  )))
77 77  
78 78  * (((
79 -What **sub-band** the server support?
78 +What **sub-band** the server support ?
80 80  )))
81 81  * (((
82 -What is the **sub-band** the gateway support?
81 +What is the **sub-band** the gateway support ?
83 83  )))
84 84  * (((
85 -What is the **sub-band** the end node is using?
84 +What is the **sub-band** the end node is using ?
86 86  )))
87 87  
88 88  (((
... ... @@ -94,7 +94,7 @@
94 94  )))
95 95  
96 96  (((
97 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
96 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
98 98  )))
99 99  
100 100  (((
... ... @@ -102,7 +102,7 @@
102 102  )))
103 103  
104 104  (((
105 -Here are the frequency tables for these bands as reference:
104 +Here are the freuqency tables for these bands as reference:
106 106  )))
107 107  
108 108  [[image:image-20220526163801-6.png]]
... ... @@ -127,12 +127,12 @@
127 127  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
128 128  )))
129 129  
130 -[[image:image-20240123151225-3.png||height="434" width="902"]]
129 +[[image:image-20220526164052-9.png]]
131 131  
132 132  (((
133 133  TTN FREQUENCY PLAN
134 134  
135 -(% style="display:none" %) (%%)
134 +
136 136  )))
137 137  
138 138  (((
... ... @@ -139,260 +139,69 @@
139 139  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
140 140  )))
141 141  
142 -(% style="display:none" %) (%%)
143 143  
144 -= 3. Why I see data lost/ is not periodically uplink? Even the signal strength is good =
145 145  
143 += 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
146 146  
145 +
147 147  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
148 148  
149 -* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
148 +* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
149 +* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
150 +* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
150 150  
151 -* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
152 -
153 -* (% style="color:blue" %)**LoRaWAN server**  (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
154 -
155 155  (((
156 156  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
157 157  )))
158 158  
159 -
160 160  (((
161 -Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
162 -)))
163 -
164 -
165 -= 4. Why i see packet lost =
166 -
167 -== **1. Signal problem** ==
168 -
169 -
170 -(% style="color:blue" %)**1)**(%%)  (% style="color:blue" %)**ADR automatic adjustment** (%%)
171 -
172 -**Reason:**
173 -
174 -When the signal is at a critical value, the server may configure the node to adjust to a lower power DR.
175 -At this time, the server is at risk of losing uplink.
176 -
177 -
178 -**Solution:**
179 -
180 -Users can manually fix the DR value.
181 181  
182 -
183 -(% style="color:red" %)
184 -**Notice:**
185 -
186 -* User need to set Adaptive Data Rate(ADR)=0 first. otherwise device will respond to server's ADR command and change the DR according to server auto-adjustment.
187 -
188 -* Data Rate specifies Spreading Factor. The mapping varies in different frequency bands. User can check this link for detail. [[rp2-1.0.3-lorawan-regional-parameters.pdf>>https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/]]
189 -
190 -(% style="color:blue" %)**AT Command: AT+DR**
191 -
192 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:409px" %)
193 -|(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:147px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:100px" %)**Response**
194 -|(% style="width:156px" %)AT+DR=?|(% style="width:147px" %)Get the Data Rate.|(% style="width:100px" %)5(((
195 -OK
196 196  )))
197 -|(% style="width:156px" %)AT+DR=2|(% style="width:147px" %)Set the Data Rate.|(% style="width:100px" %)OK(((
198 -
199 -)))
200 200  
201 -(% style="color:blue" %)**Downlink Command: 0x2200aaFF**
202 -
203 -If the downlink payload=220001FF, it means setting the data rate to 1, while type code is 22 00 aa FF.
204 -
205 -* **Example 1**: Downlink Payload: **220001FF**  ~/~/ Set AT+DR=1.
206 -
207 -* **Example 2**: Downlink Payload: **220000FF**  ~/~/ Set AT+DR=0.
208 -
209 -(% style="display:none" %) (%%)
210 -
211 -
212 -(% style="color:blue" %)**2)**(%%)  (% style="color:blue" %)**Node antenna problem**
213 -
214 -**Reason:**
215 -
216 -Node antenna is loose
217 -
218 -
219 -**Solution:**
220 -
221 -Please check whether the antenna interface and module interface are detached
222 -
223 -[[image:image-20250429114526-1.png||height="429" width="303"]]
224 -
225 -
226 -
227 -(% style="color:blue" %)**3) **(%%) (% style="color:blue" %)**Gateway antenna problem**
228 -
229 -**Reason:**
230 -Gateway uses antenna with wrong frequency band
231 -
232 -For example: 868-band gateway uses antenna with 915-band, which will cause the signal to be greatly reduced
233 -
234 -
235 -**Solution:**
236 -
237 -Please check whether the silk screen on the antenna conflicts with the frequency you set.
238 -
239 -[[image:image-20250429115124-2.png]][[image:image-20250429115159-3.png||height="550" width="224"]]
240 -
241 -
242 -(% style="color:blue" %)**4) **(%%) (% style="color:blue" %)**Gateway module problem**
243 -
244 -**Reason:**
245 -
246 -Gateway uses module with wrong frequency band
247 -For example: 868-band gateway uses module with 915-band, which will cause the signal to be greatly reduced
248 -
249 -
250 -**Solution:**
251 -
252 -Please check whether the silkscreen of the module conflicts with the frequency you set.
253 -
254 -[[image:image-20250429115951-5.png||height="288" width="384"]][[image:image-20250429133640-7.png||height="284" width="378"]]
255 -
256 -
257 -== **2. Frequency point problem** ==
258 -
259 -
260 -**Reason:**
261 -
262 -There are multiple frequency configurations in AS923/US915/AU915/CN470.
263 -
264 -The frequency point of the gateway or server is wrong or missing.
265 -
266 -
267 -**Solution:**
268 -
269 -Users need to check whether the server or gateway configuration is missing or has an incorrect frequency.
270 -
271 -The frequency range used in the dragino node is as follows
272 -
273 -
274 -== **3. Frequency band problem** ==
275 -
276 -
277 -**Reason:**
278 -
279 -When there are multiple gateways, the node cannot lock the frequency band.
280 -
281 -
282 -**Solution:**
283 -
284 284  (((
285 -By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
161 +Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
286 286  )))
287 287  
288 -(((
289 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
290 -)))
291 291  
292 -(((
293 -
294 -)))
295 295  
296 -(((
297 -For example, in (% style="color:blue" %)**US915**(%%) band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
298 -)))
166 += 4. Transmision on ABP Mode =
299 299  
300 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627160940-13.png?rev=1.1||alt="image-20220627160940-13.png"]]
301 301  
302 -
303 303  (((
304 -When you use the TTN V3 network, the US915 frequency bands use are:
170 +In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
305 305  )))
306 306  
307 -* (((
308 -903.9 - SF7BW125 to SF10BW125
309 -)))
310 -* (((
311 -904.1 - SF7BW125 to SF10BW125
312 -)))
313 -* (((
314 -904.3 - SF7BW125 to SF10BW125
315 -)))
316 -* (((
317 -904.5 - SF7BW125 to SF10BW125
318 -)))
319 -* (((
320 -904.7 - SF7BW125 to SF10BW125
321 -)))
322 -* (((
323 -904.9 - SF7BW125 to SF10BW125
324 -)))
325 -* (((
326 -905.1 - SF7BW125 to SF10BW125
327 -)))
328 -* (((
329 -905.3 - SF7BW125 to SF10BW125
330 -)))
331 -* (((
332 -904.6 - SF8BW500
333 -)))
334 -
335 335  (((
336 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN V3 network and uplink data. To solve this issue, you can access the device via the AT commands and run:
174 +
337 337  )))
338 338  
339 339  (((
340 -(% style="color:blue" %)**AT+CHE=2**
178 +So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
341 341  )))
342 342  
343 343  (((
344 -(% style="color:blue" %)**ATZ**
345 -)))
346 -
347 -
348 -(((
349 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
350 -)))
351 -
352 -(((
353 -The (% style="color:blue" %)**AU915**(%%) band is similar. Below are the AU915 Uplink Channels.
354 -
355 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627161124-14.png?rev=1.1||alt="image-20220627161124-14.png"]]
356 -
357 357  
358 358  )))
359 359  
360 -= 5. Transmision on ABP Mode =
361 -
362 -
363 363  (((
364 -In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
365 -)))
366 -
367 -(((
368 -So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
369 -)))
370 -
371 -(((
372 372  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
373 -
374 -[[image:image-20240123161737-4.png||height="395" width="763"]]
375 375  )))
376 376  
377 -[[image:image-20240123161853-6.png||height="599" width="771"]]
189 +[[image:image-20220526164508-10.png]]
378 378  
379 379  Disable Frame Counter Check in ABP Mode
380 380  
381 381  
382 -= 6. Downstream Debug =
383 383  
384 -== 6.1 How it work ==
195 += 5. Downstream Debug =
385 385  
197 +== 5.1 How it work ==
386 386  
199 +
387 387  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
388 388  
389 389  (((
390 -Depends on Class A or Class C, the receive windows will be a little difference. The main difference between Class A and Class C:
391 -
392 -* **Class A** : Suitable for Battery powered end node. Class A will save a lot of power but it can only receive downlink after each uplink
393 -* **Class C**: End node can receive downlink immediately but have higher power consumption.
394 -
395 -
203 +Depends on Class A or Class C, the receive windows will be a little difference,
396 396  )))
397 397  
398 398  [[image:image-20220531161828-1.png]]
... ... @@ -403,18 +403,16 @@
403 403  Below are the requirement for the End Device to receive the packets.
404 404  
405 405  * The End Device must open the receive windows: RX1 or RX2
406 -
407 407  * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node.
408 -
409 409  * This downstream packet must arrive to the end node while RX1 or RX2 is open.
410 -
411 411  * This packet must match the frequency of the RX1 or RX2 window.
412 -
413 413  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
414 414  
415 -== 6.2 See Debug Info ==
416 416  
417 417  
221 +== 5.2 See Debug Info ==
222 +
223 +
418 418  (((
419 419  (% style="color:blue" %)**For LoRaWAN Server**
420 420  )))
... ... @@ -424,27 +424,24 @@
424 424  )))
425 425  
426 426  (((
427 -Configure a downlink to the end device
428 -
429 -[[image:image-20240129152412-8.png||height="486" width="1206"]]
233 +Configure a downstream to the end device
430 430  )))
431 431  
236 +[[image:image-20220526164623-12.png]]
432 432  
433 433  (((
434 434  Set a downstream in TTN and see it is sent
435 435  )))
436 436  
437 -(% style="color:red" %)**Note: After the downlink command is successfully sent from the platform to the node, the downlink command is executed only after the platform receives the next uplink package from the node.**
438 438  
439 -
440 440  (((
441 -This downlink info will then pass to the gateway downlink list. and the DR which is used (SF7BW500) in US915 is DR5.
244 +This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
442 442  )))
443 443  
444 -[[image:image-20240129152049-7.png||height="463" width="1166"]]
247 +[[image:image-20220526164650-13.png]]
445 445  
446 446  (((
447 -Gateway Traffic can see this downlink info
250 +Gateway Traffic can see this downstream info
448 448  )))
449 449  
450 450  
... ... @@ -454,10 +454,10 @@
454 454  )))
455 455  
456 456  (((
457 -When the downlink packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragino Gateway, this can be checked by running "logread -f" in the SSH console. and see below:
260 +When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below:
458 458  )))
459 459  
460 -[[image:image-20240129154321-9.png]]
263 +[[image:image-20220526164734-14.png]]
461 461  
462 462  (((
463 463  Gateway Sent out this packet
... ... @@ -474,13 +474,13 @@
474 474  )))
475 475  
476 476  (((
477 -* (% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
280 +(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
281 +(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
282 +(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
283 +(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
478 478  
479 -* (% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
480 480  
481 -* (% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
482 -
483 -* (% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
286 +
484 484  )))
485 485  
486 486  (((
... ... @@ -517,24 +517,24 @@
517 517   1:0012345678}}}
518 518  
519 519  
520 -== 6.3 If problem doesn't solve ==
521 521  
324 +== 5.3 If problem doesn't solve ==
522 522  
326 +
523 523  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
524 524  
525 525  * End node console to show the transmit freuqency and DR.
526 -
527 527  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server.
528 -
529 529  * Gateway traffic (from server UI) to shows the data exchange between gateway and server.
530 -
531 531  * End Node traffic (from server UI) to shows end node activity in server.
532 532  
533 -= 7. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
534 534  
535 535  
336 += 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
337 +
338 +
536 536  (((
537 -In LoRaWAN, the gateway will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
340 +In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
538 538  )))
539 539  
540 540  (((
... ... @@ -556,74 +556,65 @@
556 556  )))
557 557  
558 558  
559 -= 8. Decrypt a LoRaWAN Packet =
560 560  
363 += 7. Decrypt a LoRaWAN Packet =
561 561  
562 -(% style="color:blue" %)**1. LHT65N End device configure:**
563 563  
366 +(% style="color:blue" %)**1. LHT65 End device configure:**
367 +
564 564  **Change to ABP Mode:  AT+NJM=0**
369 +**Change to fix frequency:  AT+CHS=904900000**
370 +**Change to fix DR:  AT+DR=0**
565 565  
566 -**Change to fix frequency:  ​​​​AT+CHE=1**
567 567  
373 +[[image:image-20220526165525-16.png]]
568 568  
569 -**AT+CFG(Print configuration):**
570 570  
571 -[[image:image-20240129170603-7.png||height="697" width="545"]][[image:image-20240129163741-3.png||height="694" width="565"]]
572 572  
377 +(% style="color:blue" %)**2. In LG02 , configure to receive above message**
573 573  
574 -**Configuration: **
379 +[[image:image-20220526165612-17.png]]
575 575  
576 -[[image:image-20240129164219-4.png||height="612" width="440"]]
577 577  
382 +In LG02 console, we can see the hex receive are:
578 578  
384 +[[image:image-20220526171112-21.png]]
579 579  
580 -(% style="color:blue" %)**2. In LPS8-v2, configure to receive above message**
581 581  
582 -[[image:image-20240129164326-5.png||height="506" width="1114"]]
583 583  
388 +(% style="color:blue" %)**3. Decode the info in web**
584 584  
585 -In LPS8-v2 console, we can see the Base64 receive are:
390 +[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/]]
586 586  
587 -[[image:image-20240129170137-6.png||height="459" width="1116"]]
392 +Need these three fields:
588 588  
394 +LoRa packet hex format: 40c1190126800100024926272bf18bbb6341584e27e23245 (from LG02)
589 589  
590 -(% style="color:blue" %)**3. Decode the info in CMD(Command prompt window)**
396 +AT+NWKSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End node Network Session Key)
591 591  
592 -LoRa packet Base64 format:  QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75 **(from LPS8-v2)**
398 +AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
593 593  
594 -Then the instructions and format parsed in SecureCRT are:  ./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75
595 595  
401 +[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
596 596  
597 -**Step1: Open CMD, Enter the gateway IP and port.(ssh root@gateway IP -p 22)**
403 +[[image:image-20220526171029-20.png]]
598 598  
599 -[[image:image-20240129190752-17.png||height="338" width="901"]]
405 +(((
406 + The FRMPayload is the device payload.
407 +)))
600 600  
601 -[[image:image-20240129191937-21.png||height="450" width="901"]]
602 602  
603 603  
604 -**Step2: Enter the command to download the LoRa parsing package.(npm install lora-packet)**
411 += 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
605 605  
606 -[[image:image-20240129192239-22.png||height="416" width="902"]]
607 607  
608 -[[image:image-20240129192549-23.png||height="459" width="898"]]
609 -
610 -
611 -**Step3: Parse the gateway raw payload.(./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75)**
612 -
613 -[[image:image-20240129192908-24.png||height="477" width="907"]]
614 -
615 -[[image:image-20240129192954-25.png||height="485" width="916"]]
616 -
617 -
618 -= 9. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
619 -
620 -
621 621  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
622 622  
623 623  
624 -= 10. Why do I see a "MIC Mismatch" error message from the server? =
625 625  
418 += 9. Why do I see a "MIC Mismatch" error message from the server? =
626 626  
420 +
627 627  (((
628 628  1)  If the user receives a "MIC Mismatch" message after registering the node on the server.
629 629  )))
... ... @@ -646,56 +646,35 @@
646 646  
647 647  * (((
648 648  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
649 -)))
650 650  
651 -(% class="wikigeneratedid" %)
652 -3)Wrong Regional Parameters version selected
653 - We generally use versions above 1.0.2
654 654  
655 -(% class="wikigeneratedid" %)
656 -[[image:image-20230322163227-1.png]]
657 657  
658 -(% class="wikigeneratedid" %)
659 -4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
446 +
447 +)))
660 660  
449 += 10. Why i got the payload only with "0x00" or "AA~=~="? =
661 661  
662 -= 11. Why I got the payload only with "0x00" or "AA~=~="? =
663 663  
452 +**Why this happen:**
664 664  
665 -(% style="color:blue" %)**Why sensor sends 0x00?**
454 +For US915, AU915 or AS923 frequencies.It is possible because: .
666 666  
667 -For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
456 +When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
668 668  
669 -**Possible Case 1**:
458 +When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
670 670  
671 -Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
672 672  
461 +**How to solve:**
673 673  
674 -**Possible Case 2:**
463 +Solution: Use the decoder to filter out this 0x00 packet.
675 675  
676 -For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
677 -
678 -
679 -(% style="color:blue" %)**How to solve:**
680 -
681 -Solution:
682 -
683 -~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
684 -
685 -2. Data rate changed from DR3 to DR5, increasing upload byte length
686 -AT+ADR=0
687 -AT+DR=3
688 -
689 -Downlink:
690 -
691 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
692 -
693 693  Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
694 694  
695 695  
696 -= 12. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
697 697  
469 += 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
698 698  
471 +
699 699  (((
700 700  It is possible the keys is erased during upgrading of firmware. and the console output shows below after AT+CFG
701 701  )))
... ... @@ -754,7 +754,8 @@
754 754  (Any combination of 16 bit codes can be used)
755 755  
756 756  
757 -= 13. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
530 +
531 += 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? =
758 758  )))
759 759  
760 760  
... ... @@ -761,27 +761,6 @@
761 761  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
762 762  
763 763  
764 -= 14. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
765 765  
766 -
767 -In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
768 -
769 -
770 -In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
771 -
772 -We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
773 -
774 -* (((
775 -Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
776 -)))
777 -* (((
778 -Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
779 -)))
780 -
781 -This change will make the activation time a little longer but make sure the device can be used in any sub-band.
782 -
783 -
784 -Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
785 -
786 -
787 -[[image:image-20221215223215-1.png||height="584" width="1280"]]
539 +(% class="wikigeneratedid" %)
540 +
image-20221215223215-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -183.6 KB
Content
image-20230322163227-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -43.1 KB
Content
image-20240123150720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -108.0 KB
Content
image-20240129142110-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -126.9 KB
Content
image-20240129142147-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -116.1 KB
Content
image-20240129142557-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -125.7 KB
Content
image-20240129142631-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -189.0 KB
Content
image-20240129150821-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -129.2 KB
Content
image-20240129151608-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -318.1 KB
Content
image-20240129152049-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -148.3 KB
Content
image-20240129152412-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -133.6 KB
Content
image-20240129154321-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -99.5 KB
Content
image-20240129163533-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20240129163714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.2 KB
Content
image-20240129163741-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -36.5 KB
Content
image-20240129164219-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -30.3 KB
Content
image-20240129164326-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.8 KB
Content
image-20240129170137-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -115.2 KB
Content
image-20240129170603-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.2 KB
Content
image-20240129172956-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -54.2 KB
Content
image-20240129173810-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
image-20240129173932-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -73.6 KB
Content
image-20240129174125-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -77.0 KB
Content
image-20240129174549-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
image-20240129174717-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
image-20240129174948-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.1 KB
Content
image-20240129175037-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
image-20240129190344-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.2 KB
Content
image-20240129190752-17.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.9 KB
Content
image-20240129190840-18.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.2 KB
Content
image-20240129191130-19.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -81.7 KB
Content
image-20240129191315-20.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -50.0 KB
Content
image-20240129191937-21.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.8 KB
Content
image-20240129192239-22.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -77.5 KB
Content
image-20240129192549-23.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -59.5 KB
Content
image-20240129192908-24.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20240129192954-25.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -62.4 KB
Content
image-20250429114526-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -3.2 MB
Content
image-20250429115124-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -193.2 KB
Content
image-20250429115159-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1014.1 KB
Content
image-20250429115942-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -435.8 KB
Content
image-20250429115951-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content
image-20250429120030-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content
image-20250429133640-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content