Last modified by Xiaoling on 2025/05/05 08:51

From version 101.1
edited by Bei Jinggeng
on 2025/04/29 13:57
Change comment: There is no comment for this version
To version 40.1
edited by Bei Jinggeng
on 2023/04/23 10:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  
6 6  
7 -= 1. Join process page check =
7 += 1.(% style="display:none" %) (%%) OTAA Join Process Debug =
8 8  
9 9  
10 10  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
... ... @@ -26,11 +26,12 @@
26 26  
27 27  * What frequency the device is sending?
28 28  
29 -[[image:image-20240129142147-2.png||height="736" width="964"]]
29 +[[image:image-20220526164956-15.png||height="591" width="1153"]]
30 30  
31 -Console Output from End device to see the transmit frequency.
31 +Console Output from End device to see the transmit frequency
32 32  
33 33  
34 +
34 34  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
35 35  
36 36  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
... ... @@ -37,36 +37,38 @@
37 37  
38 38  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
39 39  
40 -[[image:image-20240129151608-6.jpeg||height="725" width="1256"]]
41 +[[image:image-20220526163608-2.png]]
41 41  
42 42  Console Output from Gateway to see packets between end node and server.
43 43  
44 44  
45 -(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
46 46  
47 -* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
47 +(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
48 48  
49 -* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
49 +* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
50 50  
51 +* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
52 +
51 51  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
52 52  
53 -[[image:image-20240129150821-5.jpeg||height="522" width="1264"]]
55 +[[image:image-20220526163633-3.png]]
54 54  
55 -The Traffic for the End node in the server, use TTN as example.
57 +The Traffic for the End node in the server, use TTN as example
56 56  
57 57  
60 +
58 58  (% style="color:blue" %)**4. Data Page in LoRaWAN server**
59 59  
60 60  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
61 61  
62 -[[image:image-20240129142557-3.png||height="488" width="1267"]]
65 +[[image:image-20220526163704-4.png]]
63 63  
64 64  The data for the end device set in server
65 65  
66 66  
67 -[[image:image-20240129142631-4.png||height="637" width="1256"]]
70 +[[image:image-20220526163732-5.png]]
68 68  
69 -Check if OTAA Keys match the keys in device.
72 +Check if OTAA Keys match the keys in device
70 70  
71 71  
72 72  = 2. Notice of US915/CN470/AU915 Frequency band =
... ... @@ -73,17 +73,17 @@
73 73  
74 74  
75 75  (((
76 -If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
79 +If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
77 77  )))
78 78  
79 79  * (((
80 -What **sub-band** the server support?
83 +What **sub-band** the server support ?
81 81  )))
82 82  * (((
83 -What is the **sub-band** the gateway support?
86 +What is the **sub-band** the gateway support ?
84 84  )))
85 85  * (((
86 -What is the **sub-band** the end node is using?
89 +What is the **sub-band** the end node is using ?
87 87  )))
88 88  
89 89  (((
... ... @@ -95,7 +95,7 @@
95 95  )))
96 96  
97 97  (((
98 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
101 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
99 99  )))
100 100  
101 101  (((
... ... @@ -103,7 +103,7 @@
103 103  )))
104 104  
105 105  (((
106 -Here are the frequency tables for these bands as reference:
109 +Here are the freuqency tables for these bands as reference:
107 107  )))
108 108  
109 109  [[image:image-20220526163801-6.png]]
... ... @@ -128,7 +128,7 @@
128 128  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
129 129  )))
130 130  
131 -[[image:image-20240123151225-3.png||height="434" width="902"]]
134 +[[image:image-20220526164052-9.png]]
132 132  
133 133  (((
134 134  TTN FREQUENCY PLAN
... ... @@ -142,7 +142,7 @@
142 142  
143 143  (% style="display:none" %) (%%)
144 144  
145 -= 3. Why I see data lost/ is not periodically uplink Even the signal strength is good =
148 += 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
146 146  
147 147  
148 148  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
... ... @@ -163,203 +163,10 @@
163 163  )))
164 164  
165 165  
166 -= 4. Why i see packet lost =
169 += 4. Transmision on ABP Mode =
167 167  
168 -== **1. Signal problem** ==
169 169  
170 -
171 -1)  (% style="color:blue" %)**ADR automatic adjustment** (%%)
172 -
173 -Reason:
174 -
175 -When the signal is at a critical value, the server may configure the node to adjust to a lower power DR.
176 -At this time, the server is at risk of losing uplink.
177 -
178 -
179 -Solution:
180 -
181 -Users can manually fix the DR value.
182 -
183 -
184 -(% style="color:red" %)
185 -**Notice:**
186 -
187 -* User need to set Adaptive Data Rate(ADR)=0 first. otherwise device will respond to server's ADR command and change the DR according to server auto-adjustment.
188 -
189 -* Data Rate specifies Spreading Factor. The mapping varies in different frequency bands. User can check this link for detail. [[rp2-1.0.3-lorawan-regional-parameters.pdf>>https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/]]
190 -
191 -(% style="color:blue" %)**AT Command: AT+DR**
192 -
193 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:409px" %)
194 -|(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:147px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:100px" %)**Response**
195 -|(% style="width:156px" %)AT+DR=?|(% style="width:147px" %)Get the Data Rate.|(% style="width:100px" %)5(((
196 -OK
197 -)))
198 -|(% style="width:156px" %)AT+DR=2|(% style="width:147px" %)Set the Data Rate.|(% style="width:100px" %)OK(((
199 -
200 -)))
201 -
202 -(% style="color:blue" %)**Downlink Command: 0x2200aaFF**
203 -
204 -If the downlink payload=220001FF, it means setting the data rate to 1, while type code is 22 00 aa FF.
205 -
206 -* **Example 1**: Downlink Payload: **220001FF**  ~/~/ Set AT+DR=1.
207 -
208 -* **Example 2**: Downlink Payload: **220000FF**  ~/~/ Set AT+DR=0.
209 -
210 -(% style="display:none" %) (%%)
211 -
212 -
213 -2)  (% style="color:blue" %)**Node antenna problem**
214 -
215 -Reason:
216 -
217 -Node antenna is loose
218 -
219 -
220 -Solution:
221 -
222 -Please check whether the antenna interface and module interface are detached
223 -
224 -[[image:image-20250429114526-1.png||height="429" width="303"]]
225 -
226 -
227 -
228 -3) (% style="color:blue" %)**Gateway antenna problem**
229 -
230 -Reason:
231 -Gateway uses antenna with wrong frequency band
232 -
233 -For example: 868-band gateway uses antenna with 915-band, which will cause the signal to be greatly reduced
234 -
235 -
236 -Solution:
237 -
238 -Please check whether the silk screen on the antenna conflicts with the frequency you set.
239 -
240 -[[image:image-20250429115124-2.png]][[image:image-20250429115159-3.png||height="550" width="224"]]
241 -
242 -
243 -4) (% style="color:blue" %)**Gateway module problem**
244 -
245 -Reason:
246 -
247 -Gateway uses module with wrong frequency band
248 -For example: 868-band gateway uses module with 915-band, which will cause the signal to be greatly reduced
249 -
250 -
251 -Solution:
252 -
253 -Please check whether the silkscreen of the module conflicts with the frequency you set.
254 -
255 -[[image:image-20250429115951-5.png||height="288" width="384"]][[image:image-20250429133640-7.png||height="284" width="378"]]
256 -
257 -
258 -== **2. Frequency point problem** ==
259 -
260 -Reason:
261 -
262 -There are multiple frequency configurations in AS923/US915/AU915/CN470.
263 -
264 -The frequency point of the gateway or server is wrong or missing.
265 -
266 -
267 -Solution:
268 -
269 -Users need to check whether the server or gateway configuration is missing or has an incorrect frequency.
270 -
271 -The frequency range used in the dragino node is as follows
272 -
273 -
274 -== **3. Frequency band problem** ==
275 -
276 -Reason:
277 -
278 -When there are multiple gateways, the node cannot lock the frequency band.
279 -
280 -
281 -Solution:
282 -
283 283  (((
284 -By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
285 -)))
286 -
287 -(((
288 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
289 -)))
290 -
291 -(((
292 -
293 -)))
294 -
295 -(((
296 -For example, in (% style="color:blue" %)**US915**(%%) band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
297 -)))
298 -
299 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627160940-13.png?rev=1.1||alt="image-20220627160940-13.png"]]
300 -
301 -
302 -(((
303 -When you use the TTN V3 network, the US915 frequency bands use are:
304 -)))
305 -
306 -* (((
307 -903.9 - SF7BW125 to SF10BW125
308 -)))
309 -* (((
310 -904.1 - SF7BW125 to SF10BW125
311 -)))
312 -* (((
313 -904.3 - SF7BW125 to SF10BW125
314 -)))
315 -* (((
316 -904.5 - SF7BW125 to SF10BW125
317 -)))
318 -* (((
319 -904.7 - SF7BW125 to SF10BW125
320 -)))
321 -* (((
322 -904.9 - SF7BW125 to SF10BW125
323 -)))
324 -* (((
325 -905.1 - SF7BW125 to SF10BW125
326 -)))
327 -* (((
328 -905.3 - SF7BW125 to SF10BW125
329 -)))
330 -* (((
331 -904.6 - SF8BW500
332 -)))
333 -
334 -(((
335 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN V3 network and uplink data. To solve this issue, you can access the device via the AT commands and run:
336 -)))
337 -
338 -(((
339 -(% style="color:blue" %)**AT+CHE=2**
340 -)))
341 -
342 -(((
343 -(% style="color:blue" %)**ATZ**
344 -)))
345 -
346 -
347 -(((
348 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
349 -)))
350 -
351 -(((
352 -The (% style="color:blue" %)**AU915**(%%) band is similar. Below are the AU915 Uplink Channels.
353 -
354 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627161124-14.png?rev=1.1||alt="image-20220627161124-14.png"]]
355 -
356 -
357 -)))
358 -
359 -= 5. Transmision on ABP Mode =
360 -
361 -
362 -(((
363 363  In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
364 364  )))
365 365  
... ... @@ -369,29 +369,22 @@
369 369  
370 370  (((
371 371  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
372 -
373 -[[image:image-20240123161737-4.png||height="395" width="763"]]
374 374  )))
375 375  
376 -[[image:image-20240123161853-6.png||height="599" width="771"]]
184 +[[image:image-20220526164508-10.png]]
377 377  
378 378  Disable Frame Counter Check in ABP Mode
379 379  
380 380  
381 -= 6. Downstream Debug =
189 += 5. Downstream Debug =
382 382  
383 -== 6.1 How it work ==
191 +== 5.1 How it work ==
384 384  
385 385  
386 386  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
387 387  
388 388  (((
389 -Depends on Class A or Class C, the receive windows will be a little difference. The main difference between Class A and Class C:
390 -
391 -* **Class A** : Suitable for Battery powered end node. Class A will save a lot of power but it can only receive downlink after each uplink
392 -* **Class C**: End node can receive downlink immediately but have higher power consumption.
393 -
394 -
197 +Depends on Class A or Class C, the receive windows will be a little difference,
395 395  )))
396 396  
397 397  [[image:image-20220531161828-1.png]]
... ... @@ -411,9 +411,10 @@
411 411  
412 412  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
413 413  
414 -== 6.2 See Debug Info ==
415 415  
218 +== 5.2 See Debug Info ==
416 416  
220 +
417 417  (((
418 418  (% style="color:blue" %)**For LoRaWAN Server**
419 419  )))
... ... @@ -423,27 +423,24 @@
423 423  )))
424 424  
425 425  (((
426 -Configure a downlink to the end device
427 -
428 -[[image:image-20240129152412-8.png||height="486" width="1206"]]
230 +Configure a downstream to the end device
429 429  )))
430 430  
233 +[[image:image-20220526164623-12.png]]
431 431  
432 432  (((
433 433  Set a downstream in TTN and see it is sent
434 434  )))
435 435  
436 -(% style="color:red" %)**Note: After the downlink command is successfully sent from the platform to the node, the downlink command is executed only after the platform receives the next uplink package from the node.**
437 437  
438 -
439 439  (((
440 -This downlink info will then pass to the gateway downlink list. and the DR which is used (SF7BW500) in US915 is DR5.
241 +This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
441 441  )))
442 442  
443 -[[image:image-20240129152049-7.png||height="463" width="1166"]]
244 +[[image:image-20220526164650-13.png]]
444 444  
445 445  (((
446 -Gateway Traffic can see this downlink info
247 +Gateway Traffic can see this downstream info
447 447  )))
448 448  
449 449  
... ... @@ -453,10 +453,10 @@
453 453  )))
454 454  
455 455  (((
456 -When the downlink packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragino Gateway, this can be checked by running "logread -f" in the SSH console. and see below:
257 +When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below:
457 457  )))
458 458  
459 -[[image:image-20240129154321-9.png]]
260 +[[image:image-20220526164734-14.png]]
460 460  
461 461  (((
462 462  Gateway Sent out this packet
... ... @@ -516,7 +516,7 @@
516 516   1:0012345678}}}
517 517  
518 518  
519 -== 6.3 If problem doesn't solve ==
320 +== 5.3 If problem doesn't solve ==
520 520  
521 521  
522 522  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
... ... @@ -529,11 +529,12 @@
529 529  
530 530  * End Node traffic (from server UI) to shows end node activity in server.
531 531  
532 -= 7. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
533 533  
334 += 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
534 534  
336 +
535 535  (((
536 -In LoRaWAN, the gateway will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
338 +In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
537 537  )))
538 538  
539 539  (((
... ... @@ -555,83 +555,62 @@
555 555  )))
556 556  
557 557  
558 -= 8. Decrypt a LoRaWAN Packet =
360 += 7. Decrypt a LoRaWAN Packet =
559 559  
560 560  
561 -(% style="color:blue" %)**1. LHT65N End device configure:**
363 +(% style="color:blue" %)**1. LHT65 End device configure:**
562 562  
563 563  **Change to ABP Mode:  AT+NJM=0**
564 564  
565 -**Change to fix frequency:  ​​​​AT+CHE=1**
367 +**Change to fix frequency:  AT+CHS=904900000**
566 566  
369 +**Change to fix DR:  AT+DR=0**
567 567  
568 -**AT+CFG(Print configuration):**
569 569  
570 -[[image:image-20240129170603-7.png||height="697" width="545"]][[image:image-20240129163741-3.png||height="694" width="565"]]
372 +[[image:image-20220526165525-16.png]]
571 571  
572 572  
573 573  
574 -**Configuration: **
376 +(% style="color:blue" %)**2. In LG02 , configure to receive above message**
575 575  
576 -[[image:image-20240129164219-4.png||height="612" width="440"]]
378 +[[image:image-20220526165612-17.png]]
577 577  
578 578  
381 +In LG02 console, we can see the hex receive are:
579 579  
580 -(% style="color:blue" %)**2. In LPS8-v2, configure to receive above message**
383 +[[image:image-20220526171112-21.png]]
581 581  
582 -[[image:image-20240129164326-5.png||height="506" width="1114"]]
583 583  
584 584  
585 -In LPS8-v2 console, we can see the Base64 receive are:
387 +(% style="color:blue" %)**3. Decode the info in web**
586 586  
587 -[[image:image-20240129170137-6.png||height="459" width="1116"]]
389 +[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/]]
588 588  
391 +Need these three fields:
589 589  
393 +LoRa packet hex format: 40c1190126800100024926272bf18bbb6341584e27e23245 (from LG02)
590 590  
591 -(% style="color:blue" %)**3. Decode the info in CMD(Command prompt window)**
395 +AT+NWKSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End node Network Session Key)
592 592  
593 -LoRa packet Base64 format:  QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75 **(from LPS8-v2)**
397 +AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
594 594  
595 -Then the instructions and format parsed in SecureCRT are:  ./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75
596 596  
400 +[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
597 597  
598 -**Step1: Open CMD, Enter the gateway IP and port.(ssh root@gateway IP -p 22)**
402 +[[image:image-20220526171029-20.png]]
599 599  
600 -[[image:image-20240129190752-17.png||height="338" width="901"]]
404 +(((
405 + The FRMPayload is the device payload.
406 +)))
601 601  
602 -[[image:image-20240129191937-21.png||height="450" width="901"]]
603 603  
409 += 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
604 604  
605 -**Step2: Enter the command to download the LoRa parsing package.(npm install lora-packet)**
606 606  
607 -[[image:image-20240129192239-22.png||height="416" width="902"]]
608 -
609 -[[image:image-20240129192549-23.png||height="459" width="898"]]
610 -
611 -
612 -**Step3: Parse the gateway raw payload.(./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75)**
613 -
614 -
615 -
616 -
617 -[[image:image-20240129192908-24.png||height="477" width="907"]]
618 -
619 -
620 -[[image:image-20240129192954-25.png||height="485" width="916"]]
621 -
622 -
623 -
624 -
625 -
626 -
627 -
628 -= 9. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
629 -
630 -
631 631  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
632 632  
633 633  
634 -= 10. Why do I see a "MIC Mismatch" error message from the server? =
415 += 9. Why do I see a "MIC Mismatch" error message from the server? =
635 635  
636 636  
637 637  (((
... ... @@ -669,28 +669,29 @@
669 669  4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
670 670  
671 671  
672 -= 11. Why I got the payload only with "0x00" or "AA~=~="? =
453 += 10. Why i got the payload only with "0x00" or "AA~=~="? =
673 673  
674 674  
675 -(% style="color:blue" %)**Why sensor sends 0x00?**
456 +(% style="color:blue" %)**Why this happen:**
676 676  
677 -For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
458 +For US915, AU915 or AS923 frequencies.It is possible because: .
678 678  
679 -**Possible Case 1**:
460 +When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
680 680  
681 -Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
462 +1.
682 682  
464 +When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
683 683  
684 -**Possible Case 2:**
466 +2.
685 685  
686 -For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
468 +The server downlinks a calibration time package
469 +This calibration time packet will exceed the byte limit, causing its payload to become 00
687 687  
688 -
689 689  (% style="color:blue" %)**How to solve:**
690 690  
691 691  Solution:
692 692  
693 -~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
475 +~1. Use the decoder to filter out this 0x00 packet.
694 694  
695 695  2. Data rate changed from DR3 to DR5, increasing upload byte length
696 696  AT+ADR=0
... ... @@ -703,7 +703,7 @@
703 703  Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
704 704  
705 705  
706 -= 12. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
488 += 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
707 707  
708 708  
709 709  (((
... ... @@ -764,7 +764,7 @@
764 764  (Any combination of 16 bit codes can be used)
765 765  
766 766  
767 -= 13. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
549 += 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? =
768 768  )))
769 769  
770 770  
... ... @@ -771,27 +771,30 @@
771 771  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
772 772  
773 773  
774 -= 14. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
556 += 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
775 775  
776 776  
777 -In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
559 +In US915, AU915 or CN470 frequency band, there are 8 subbands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Subband 2 in TTN. The gateway also configured to Subband 2 and cover eight channels in this subband. If the end node transfer data in Subband 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other subbands, for example subband 1, the packet won't arrive both gateway or LoRaWAN server.
778 778  
779 779  
780 -In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
562 +In Dragino Sensors old version firmware (before early 2022), the subband is fixed the subband to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
781 781  
782 -We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
564 +We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, In this case, In this case, the end node can support LoRaWAN servers with different subbands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
783 783  
784 784  * (((
785 -Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
567 +Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that subband
786 786  )))
787 787  * (((
788 -Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
570 +Use the Join successful sub-band if the server doesn't include subband info in the OTAA Join Accept message ( TTN v2 doesn't include)
789 789  )))
790 790  
791 -This change will make the activation time a little longer but make sure the device can be used in any sub-band.
573 +This change will make the activation time a littler longer but make sure the device can be used in any subband.
792 792  
793 793  
794 -Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
576 +Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the subband he use.
795 795  
796 796  
797 797  [[image:image-20221215223215-1.png||height="584" width="1280"]]
580 +
581 +(% class="wikigeneratedid" %)
582 +
image-20240123150720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -108.0 KB
Content
image-20240129142110-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -126.9 KB
Content
image-20240129142147-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -116.1 KB
Content
image-20240129142557-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -125.7 KB
Content
image-20240129142631-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -189.0 KB
Content
image-20240129150821-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -129.2 KB
Content
image-20240129151608-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -318.1 KB
Content
image-20240129152049-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -148.3 KB
Content
image-20240129152412-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -133.6 KB
Content
image-20240129154321-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -99.5 KB
Content
image-20240129163533-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20240129163714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.2 KB
Content
image-20240129163741-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -36.5 KB
Content
image-20240129164219-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -30.3 KB
Content
image-20240129164326-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.8 KB
Content
image-20240129170137-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -115.2 KB
Content
image-20240129170603-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.2 KB
Content
image-20240129172956-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -54.2 KB
Content
image-20240129173810-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
image-20240129173932-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -73.6 KB
Content
image-20240129174125-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -77.0 KB
Content
image-20240129174549-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
image-20240129174717-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
image-20240129174948-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.1 KB
Content
image-20240129175037-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
image-20240129190344-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.2 KB
Content
image-20240129190752-17.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.9 KB
Content
image-20240129190840-18.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.2 KB
Content
image-20240129191130-19.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -81.7 KB
Content
image-20240129191315-20.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -50.0 KB
Content
image-20240129191937-21.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.8 KB
Content
image-20240129192239-22.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -77.5 KB
Content
image-20240129192549-23.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -59.5 KB
Content
image-20240129192908-24.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20240129192954-25.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -62.4 KB
Content
image-20250429114526-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -3.2 MB
Content
image-20250429115124-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -193.2 KB
Content
image-20250429115159-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1014.1 KB
Content
image-20250429115942-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -435.8 KB
Content
image-20250429115951-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content
image-20250429120030-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content
image-20250429133640-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content