Last modified by Xiaoling on 2025/05/05 08:51

From version 100.1
edited by Bei Jinggeng
on 2025/04/29 13:36
Change comment: Uploaded new attachment "image-20250429133640-7.png", version {1}
To version 36.1
edited by Edwin Chen
on 2022/12/15 22:32
Change comment: Uploaded new attachment "image-20221215223215-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Edwin
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  
6 6  
7 -= 1. Join process page check =
7 += 1. OTAA Join Process Debug =
8 8  
9 9  
10 10  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
... ... @@ -11,79 +11,77 @@
11 11  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
12 12  
13 13  * End node console to show the Join freuqency and DR. (If possible)
14 -
15 15  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible)
16 -
17 17  * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible)
18 -
19 19  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
20 -
21 21  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
22 22  
19 +
20 +
23 23  (% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
24 24  
25 25  * If the device is sending join request to server?
26 -
27 27  * What frequency the device is sending?
28 28  
29 -[[image:image-20240129142147-2.png||height="736" width="964"]]
26 +[[image:image-20220526164956-15.png]]
30 30  
31 -Console Output from End device to see the transmit frequency.
28 +Console Output from End device to see the transmit frequency
32 32  
33 33  
31 +
34 34  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
35 35  
36 36  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
37 -
38 38  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
39 39  
40 -[[image:image-20240129151608-6.jpeg||height="725" width="1256"]]
37 +[[image:image-20220526163608-2.png]]
41 41  
42 42  Console Output from Gateway to see packets between end node and server.
43 43  
44 44  
45 -(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
46 46  
47 -* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
43 +(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
48 48  
49 -* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
50 -
45 +* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
46 +* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
51 51  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
52 52  
53 -[[image:image-20240129150821-5.jpeg||height="522" width="1264"]]
49 +[[image:image-20220526163633-3.png]]
54 54  
55 -The Traffic for the End node in the server, use TTN as example.
51 +The Traffic for the End node in the server, use TTN as example
56 56  
57 57  
54 +
58 58  (% style="color:blue" %)**4. Data Page in LoRaWAN server**
59 59  
60 60  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
61 61  
62 -[[image:image-20240129142557-3.png||height="488" width="1267"]]
59 +[[image:image-20220526163704-4.png]]
63 63  
64 64  The data for the end device set in server
65 65  
66 66  
67 -[[image:image-20240129142631-4.png||height="637" width="1256"]]
64 +[[image:image-20220526163732-5.png]]
68 68  
69 -Check if OTAA Keys match the keys in device.
66 +Check if OTAA Keys match the keys in device
70 70  
71 71  
69 +
72 72  = 2. Notice of US915/CN470/AU915 Frequency band =
73 73  
74 74  
75 75  (((
76 -If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
74 +If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
77 77  )))
78 78  
79 79  * (((
80 -What **sub-band** the server support?
78 +What **sub-band** the server support ?
81 81  )))
82 82  * (((
83 -What is the **sub-band** the gateway support?
81 +What is the **sub-band** the gateway support ?
84 84  )))
85 85  * (((
86 -What is the **sub-band** the end node is using?
84 +What is the **sub-band** the end node is using ?
87 87  )))
88 88  
89 89  (((
... ... @@ -95,7 +95,7 @@
95 95  )))
96 96  
97 97  (((
98 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
96 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
99 99  )))
100 100  
101 101  (((
... ... @@ -103,7 +103,7 @@
103 103  )))
104 104  
105 105  (((
106 -Here are the frequency tables for these bands as reference:
104 +Here are the freuqency tables for these bands as reference:
107 107  )))
108 108  
109 109  [[image:image-20220526163801-6.png]]
... ... @@ -128,12 +128,12 @@
128 128  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
129 129  )))
130 130  
131 -[[image:image-20240123151225-3.png||height="434" width="902"]]
129 +[[image:image-20220526164052-9.png]]
132 132  
133 133  (((
134 134  TTN FREQUENCY PLAN
135 135  
136 -(% style="display:none" %) (%%)
134 +
137 137  )))
138 138  
139 139  (((
... ... @@ -140,23 +140,24 @@
140 140  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
141 141  )))
142 142  
143 -(% style="display:none" %) (%%)
144 144  
145 -= 3. Why I see data lost/ is not periodically uplink? Even the signal strength is good =
146 146  
143 += 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
147 147  
145 +
148 148  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
149 149  
150 -* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
148 +* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
149 +* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
150 +* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
151 151  
152 -* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
153 -
154 -* (% style="color:blue" %)**LoRaWAN server**  (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
155 -
156 156  (((
157 157  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
158 158  )))
159 159  
156 +(((
157 +
158 +)))
160 160  
161 161  (((
162 162  Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
... ... @@ -163,145 +163,45 @@
163 163  )))
164 164  
165 165  
166 -= 4. Why i see packet lost =
167 167  
168 -== **1. Signal problem** ==
166 += 4. Transmision on ABP Mode =
169 169  
170 170  
171 -1)  (% style="color:blue" %)**ADR automatic adjustment** (%%)
169 +(((
170 +In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
171 +)))
172 172  
173 -Reason:
174 -
175 -When the signal is at a critical value, the server may configure the node to adjust to a lower power DR.
176 -At this time, the server is at risk of losing uplink.
177 -
178 -
179 -Solution:
180 -
181 -Users can manually fix the DR value.
173 +(((
182 182  
183 -
184 -(% style="color:red" %)
185 -**Notice:**
186 -
187 -* User need to set Adaptive Data Rate(ADR)=0 first. otherwise device will respond to server's ADR command and change the DR according to server auto-adjustment.
188 -
189 -* Data Rate specifies Spreading Factor. The mapping varies in different frequency bands. User can check this link for detail. [[rp2-1.0.3-lorawan-regional-parameters.pdf>>https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/]]
190 -
191 -(% style="color:blue" %)**AT Command: AT+DR**
192 -
193 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:409px" %)
194 -|(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:147px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:100px" %)**Response**
195 -|(% style="width:156px" %)AT+DR=?|(% style="width:147px" %)Get the Data Rate.|(% style="width:100px" %)5(((
196 -OK
197 197  )))
198 -|(% style="width:156px" %)AT+DR=2|(% style="width:147px" %)Set the Data Rate.|(% style="width:100px" %)OK(((
199 -
200 -)))
201 201  
202 -(% style="color:blue" %)**Downlink Command: 0x2200aaFF**
203 -
204 -If the downlink payload=220001FF, it means setting the data rate to 1, while type code is 22 00 aa FF.
205 -
206 -* **Example 1**: Downlink Payload: **220001FF**  ~/~/ Set AT+DR=1.
207 -
208 -* **Example 2**: Downlink Payload: **220000FF**  ~/~/ Set AT+DR=0.
209 -
210 -(% style="display:none" %) (%%)
211 -
212 -
213 -2)  (% style="color:blue" %)**Node antenna problem**
214 -
215 -Reason:
216 -
217 -Node antenna is loose
218 -
219 -
220 -Solution:
221 -
222 -Please check whether the antenna interface and module interface are detached
223 -
224 -[[image:image-20250429114526-1.png||height="429" width="303"]]
225 -
226 -
227 -
228 -3) (% style="color:blue" %)**Gateway antenna problem**
229 -
230 -Reason:
231 -Gateway uses antenna with wrong frequency band
232 -
233 -For example: 868-band gateway uses antenna with 915-band, which will cause the signal to be greatly reduced
234 -
235 -
236 -Solution:
237 -
238 -Please check whether the silk screen on the antenna conflicts with the frequency you set.
239 -
240 -[[image:image-20250429115124-2.png]][[image:image-20250429115159-3.png||height="550" width="224"]]
241 -
242 -
243 -4) (% style="color:blue" %)**Gateway module problem**
244 -
245 -Reason:
246 -
247 -Gateway uses module with wrong frequency band
248 -For example: 868-band gateway uses module with 915-band, which will cause the signal to be greatly reduced
249 -
250 -
251 -Solution:
252 -
253 -Please check whether the silkscreen of the module conflicts with the frequency you set.
254 -
255 -[[image:image-20250429115951-5.png||height="288" width="384"]][[image:image-20250429120030-6.png||height="284" width="378"]]
256 -
257 -
258 -== **2. Frequency point problem** ==
259 -
260 -The frequency point of the gateway or server is wrong or missing.
261 -
262 -
263 -== **3. Frequency band problem** ==
264 -
265 -When there are multiple gateways, the node cannot lock the frequency band.
266 -
267 -
268 -
269 -= 5. Transmision on ABP Mode =
270 -
271 -
272 272  (((
273 -In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
178 +So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
274 274  )))
275 275  
276 276  (((
277 -So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
182 +
278 278  )))
279 279  
280 280  (((
281 281  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
282 -
283 -[[image:image-20240123161737-4.png||height="395" width="763"]]
284 284  )))
285 285  
286 -[[image:image-20240123161853-6.png||height="599" width="771"]]
189 +[[image:image-20220526164508-10.png]]
287 287  
288 288  Disable Frame Counter Check in ABP Mode
289 289  
290 290  
291 -= 6. Downstream Debug =
292 292  
293 -== 6.1 How it work ==
195 += 5. Downstream Debug =
294 294  
197 +== 5.1 How it work ==
295 295  
199 +
296 296  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
297 297  
298 298  (((
299 -Depends on Class A or Class C, the receive windows will be a little difference. The main difference between Class A and Class C:
300 -
301 -* **Class A** : Suitable for Battery powered end node. Class A will save a lot of power but it can only receive downlink after each uplink
302 -* **Class C**: End node can receive downlink immediately but have higher power consumption.
303 -
304 -
203 +Depends on Class A or Class C, the receive windows will be a little difference,
305 305  )))
306 306  
307 307  [[image:image-20220531161828-1.png]]
... ... @@ -312,18 +312,16 @@
312 312  Below are the requirement for the End Device to receive the packets.
313 313  
314 314  * The End Device must open the receive windows: RX1 or RX2
315 -
316 316  * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node.
317 -
318 318  * This downstream packet must arrive to the end node while RX1 or RX2 is open.
319 -
320 320  * This packet must match the frequency of the RX1 or RX2 window.
321 -
322 322  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
323 323  
324 -== 6.2 See Debug Info ==
325 325  
326 326  
221 +== 5.2 See Debug Info ==
222 +
223 +
327 327  (((
328 328  (% style="color:blue" %)**For LoRaWAN Server**
329 329  )))
... ... @@ -333,27 +333,24 @@
333 333  )))
334 334  
335 335  (((
336 -Configure a downlink to the end device
337 -
338 -[[image:image-20240129152412-8.png||height="486" width="1206"]]
233 +Configure a downstream to the end device
339 339  )))
340 340  
236 +[[image:image-20220526164623-12.png]]
341 341  
342 342  (((
343 343  Set a downstream in TTN and see it is sent
344 344  )))
345 345  
346 -(% style="color:red" %)**Note: After the downlink command is successfully sent from the platform to the node, the downlink command is executed only after the platform receives the next uplink package from the node.**
347 347  
348 -
349 349  (((
350 -This downlink info will then pass to the gateway downlink list. and the DR which is used (SF7BW500) in US915 is DR5.
244 +This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
351 351  )))
352 352  
353 -[[image:image-20240129152049-7.png||height="463" width="1166"]]
247 +[[image:image-20220526164650-13.png]]
354 354  
355 355  (((
356 -Gateway Traffic can see this downlink info
250 +Gateway Traffic can see this downstream info
357 357  )))
358 358  
359 359  
... ... @@ -363,10 +363,10 @@
363 363  )))
364 364  
365 365  (((
366 -When the downlink packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragino Gateway, this can be checked by running "logread -f" in the SSH console. and see below:
260 +When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below:
367 367  )))
368 368  
369 -[[image:image-20240129154321-9.png]]
263 +[[image:image-20220526164734-14.png]]
370 370  
371 371  (((
372 372  Gateway Sent out this packet
... ... @@ -383,13 +383,13 @@
383 383  )))
384 384  
385 385  (((
386 -* (% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
280 +(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
281 +(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
282 +(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
283 +(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
387 387  
388 -* (% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
389 389  
390 -* (% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
391 -
392 -* (% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
286 +
393 393  )))
394 394  
395 395  (((
... ... @@ -426,24 +426,24 @@
426 426   1:0012345678}}}
427 427  
428 428  
429 -== 6.3 If problem doesn't solve ==
430 430  
324 +== 5.3 If problem doesn't solve ==
431 431  
326 +
432 432  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
433 433  
434 434  * End node console to show the transmit freuqency and DR.
435 -
436 436  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server.
437 -
438 438  * Gateway traffic (from server UI) to shows the data exchange between gateway and server.
439 -
440 440  * End Node traffic (from server UI) to shows end node activity in server.
441 441  
442 -= 7. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
443 443  
444 444  
336 += 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
337 +
338 +
445 445  (((
446 -In LoRaWAN, the gateway will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
340 +In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
447 447  )))
448 448  
449 449  (((
... ... @@ -465,85 +465,65 @@
465 465  )))
466 466  
467 467  
468 -= 8. Decrypt a LoRaWAN Packet =
469 469  
363 += 7. Decrypt a LoRaWAN Packet =
470 470  
471 -(% style="color:blue" %)**1. LHT65N End device configure:**
472 472  
366 +(% style="color:blue" %)**1. LHT65 End device configure:**
367 +
473 473  **Change to ABP Mode:  AT+NJM=0**
369 +**Change to fix frequency:  AT+CHS=904900000**
370 +**Change to fix DR:  AT+DR=0**
474 474  
475 -**Change to fix frequency:  ​​​​AT+CHE=1**
476 476  
373 +[[image:image-20220526165525-16.png]]
477 477  
478 -**AT+CFG(Print configuration):**
479 479  
480 -[[image:image-20240129170603-7.png||height="697" width="545"]][[image:image-20240129163741-3.png||height="694" width="565"]]
481 481  
377 +(% style="color:blue" %)**2. In LG02 , configure to receive above message**
482 482  
379 +[[image:image-20220526165612-17.png]]
483 483  
484 -**Configuration: **
485 485  
486 -[[image:image-20240129164219-4.png||height="612" width="440"]]
382 +In LG02 console, we can see the hex receive are:
487 487  
384 +[[image:image-20220526171112-21.png]]
488 488  
489 489  
490 -(% style="color:blue" %)**2. In LPS8-v2, configure to receive above message**
491 491  
492 -[[image:image-20240129164326-5.png||height="506" width="1114"]]
388 +(% style="color:blue" %)**3. Decode the info in web**
493 493  
390 +[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/]]
494 494  
495 -In LPS8-v2 console, we can see the Base64 receive are:
392 +Need these three fields:
496 496  
497 -[[image:image-20240129170137-6.png||height="459" width="1116"]]
394 +LoRa packet hex format: 40c1190126800100024926272bf18bbb6341584e27e23245 (from LG02)
498 498  
396 +AT+NWKSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End node Network Session Key)
499 499  
398 +AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
500 500  
501 -(% style="color:blue" %)**3. Decode the info in CMD(Command prompt window)**
502 502  
503 -LoRa packet Base64 format:  QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75 **(from LPS8-v2)**
401 +[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
504 504  
505 -Then the instructions and format parsed in SecureCRT are:  ./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75
403 +[[image:image-20220526171029-20.png]]
506 506  
405 +(((
406 + The FRMPayload is the device payload.
407 +)))
507 507  
508 -**Step1: Open CMD, Enter the gateway IP and port.(ssh root@gateway IP -p 22)**
509 509  
510 -[[image:image-20240129190752-17.png||height="338" width="901"]]
511 511  
512 -[[image:image-20240129191937-21.png||height="450" width="901"]]
411 += 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
513 513  
514 514  
515 -**Step2: Enter the command to download the LoRa parsing package.(npm install lora-packet)**
516 -
517 -[[image:image-20240129192239-22.png||height="416" width="902"]]
518 -
519 -[[image:image-20240129192549-23.png||height="459" width="898"]]
520 -
521 -
522 -**Step3: Parse the gateway raw payload.(./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75)**
523 -
524 -
525 -
526 -
527 -[[image:image-20240129192908-24.png||height="477" width="907"]]
528 -
529 -
530 -[[image:image-20240129192954-25.png||height="485" width="916"]]
531 -
532 -
533 -
534 -
535 -
536 -
537 -
538 -= 9. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
539 -
540 -
541 541  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
542 542  
543 543  
544 -= 10. Why do I see a "MIC Mismatch" error message from the server? =
545 545  
418 += 9. Why do I see a "MIC Mismatch" error message from the server? =
546 546  
420 +
547 547  (((
548 548  1)  If the user receives a "MIC Mismatch" message after registering the node on the server.
549 549  )))
... ... @@ -566,56 +566,35 @@
566 566  
567 567  * (((
568 568  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
569 -)))
570 570  
571 -(% class="wikigeneratedid" %)
572 -3)Wrong Regional Parameters version selected
573 - We generally use versions above 1.0.2
574 574  
575 -(% class="wikigeneratedid" %)
576 -[[image:image-20230322163227-1.png]]
577 577  
578 -(% class="wikigeneratedid" %)
579 -4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
446 +
447 +)))
580 580  
449 += 10. Why i got the payload only with "0x00" or "AA~=~="? =
581 581  
582 -= 11. Why I got the payload only with "0x00" or "AA~=~="? =
583 583  
452 +**Why this happen:**
584 584  
585 -(% style="color:blue" %)**Why sensor sends 0x00?**
454 +For US915, AU915 or AS923 frequencies.It is possible because: .
586 586  
587 -For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
456 +When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
588 588  
589 -**Possible Case 1**:
458 +When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
590 590  
591 -Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
592 592  
461 +**How to solve:**
593 593  
594 -**Possible Case 2:**
463 +Solution: Use the decoder to filter out this 0x00 packet.
595 595  
596 -For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
597 -
598 -
599 -(% style="color:blue" %)**How to solve:**
600 -
601 -Solution:
602 -
603 -~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
604 -
605 -2. Data rate changed from DR3 to DR5, increasing upload byte length
606 -AT+ADR=0
607 -AT+DR=3
608 -
609 -Downlink:
610 -
611 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
612 -
613 613  Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
614 614  
615 615  
616 -= 12. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
617 617  
469 += 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
618 618  
471 +
619 619  (((
620 620  It is possible the keys is erased during upgrading of firmware. and the console output shows below after AT+CFG
621 621  )))
... ... @@ -674,7 +674,8 @@
674 674  (Any combination of 16 bit codes can be used)
675 675  
676 676  
677 -= 13. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
530 +
531 += 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? =
678 678  )))
679 679  
680 680  
... ... @@ -681,27 +681,6 @@
681 681  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
682 682  
683 683  
684 -= 14. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
685 685  
686 -
687 -In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
688 -
689 -
690 -In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
691 -
692 -We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
693 -
694 -* (((
695 -Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
696 -)))
697 -* (((
698 -Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
699 -)))
700 -
701 -This change will make the activation time a little longer but make sure the device can be used in any sub-band.
702 -
703 -
704 -Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
705 -
706 -
707 -[[image:image-20221215223215-1.png||height="584" width="1280"]]
539 +(% class="wikigeneratedid" %)
540 +
image-20230322163227-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -43.1 KB
Content
image-20240123150720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -108.0 KB
Content
image-20240129142110-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -126.9 KB
Content
image-20240129142147-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -116.1 KB
Content
image-20240129142557-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -125.7 KB
Content
image-20240129142631-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -189.0 KB
Content
image-20240129150821-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -129.2 KB
Content
image-20240129151608-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -318.1 KB
Content
image-20240129152049-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -148.3 KB
Content
image-20240129152412-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -133.6 KB
Content
image-20240129154321-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -99.5 KB
Content
image-20240129163533-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20240129163714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.2 KB
Content
image-20240129163741-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -36.5 KB
Content
image-20240129164219-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -30.3 KB
Content
image-20240129164326-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.8 KB
Content
image-20240129170137-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -115.2 KB
Content
image-20240129170603-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.2 KB
Content
image-20240129172956-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -54.2 KB
Content
image-20240129173810-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
image-20240129173932-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -73.6 KB
Content
image-20240129174125-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -77.0 KB
Content
image-20240129174549-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
image-20240129174717-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
image-20240129174948-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.1 KB
Content
image-20240129175037-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
image-20240129190344-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.2 KB
Content
image-20240129190752-17.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.9 KB
Content
image-20240129190840-18.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.2 KB
Content
image-20240129191130-19.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -81.7 KB
Content
image-20240129191315-20.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -50.0 KB
Content
image-20240129191937-21.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.8 KB
Content
image-20240129192239-22.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -77.5 KB
Content
image-20240129192549-23.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -59.5 KB
Content
image-20240129192908-24.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20240129192954-25.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -62.4 KB
Content
image-20250429114526-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -3.2 MB
Content
image-20250429115124-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -193.2 KB
Content
image-20250429115159-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1014.1 KB
Content
image-20250429115942-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -435.8 KB
Content
image-20250429115951-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content
image-20250429120030-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content
image-20250429133640-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 MB
Content