Changes for page LoRaWAN Communication Debug
Last modified by Edwin Chen on 2025/01/29 20:30
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -6,7 +6,7 @@ 6 6 = 1. OTAA Join Process Debug = 7 7 8 8 These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process. 9 -\\If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include: 9 +\\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:** 10 10 11 11 * End node console to show the Join freuqency and DR. (If possible) 12 12 * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible) ... ... @@ -14,13 +14,12 @@ 14 14 * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible) 15 15 * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI) 16 16 17 - 18 18 **~1. End Device Join Screen shot, we can check:** 19 19 20 20 * If the device is sending join request to server? 21 21 * What frequency the device is sending? 22 22 23 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/0/0f/OTAA_Join-1.jpg/600px-OTAA_Join-1.jpg~|~|height="316" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:OTAA_Join-1.jpg]]22 +[[image:https://wiki.dragino.com/images/thumb/0/0f/OTAA_Join-1.jpg/600px-OTAA_Join-1.jpg||height="316" width="600"]] 24 24 25 25 Console Output from End device to see the transmit frequency 26 26 ... ... @@ -30,7 +30,7 @@ 30 30 * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency) 31 31 * If the gateway gets the Join Accept message from server and transmit it via LoRa? 32 32 33 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/1/1c/OTAA_Join-2.png/600px-OTAA_Join-2.png~|~|height="325" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:OTAA_Join-2.png]]32 +[[image:https://wiki.dragino.com/images/thumb/1/1c/OTAA_Join-2.png/600px-OTAA_Join-2.png||height="325" width="600"]] 34 34 35 35 Console Output from Gateway to see packets between end node and server. 36 36 ... ... @@ -41,7 +41,7 @@ 41 41 * If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device. 42 42 * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success. 43 43 44 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/5/5c/OTAA_Join-3.png/600px-OTAA_Join-3.png~|~|height="301" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:OTAA_Join-3.png]]43 +[[image:https://wiki.dragino.com/images/thumb/5/5c/OTAA_Join-3.png/600px-OTAA_Join-3.png||height="301" width="600"]] 45 45 46 46 The Traffic for the End node in the server, use TTN as example 47 47 ... ... @@ -50,22 +50,22 @@ 50 50 51 51 * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node. 52 52 53 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/e/ec/OTAA_Join-4.png/600px-OTAA_Join-4.png~|~|height="181" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:OTAA_Join-4.png]]52 +[[image:https://wiki.dragino.com/images/thumb/e/ec/OTAA_Join-4.png/600px-OTAA_Join-4.png||height="181" width="600"]] 54 54 55 55 The data for the end device set in server 56 56 57 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/b/b1/OTAA_Join-5.png/600px-OTAA_Join-5.png~|~|height="166" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:OTAA_Join-5.png]]56 +[[image:https://wiki.dragino.com/images/thumb/b/b1/OTAA_Join-5.png/600px-OTAA_Join-5.png||height="166" width="600"]] 58 58 59 59 Check if OTAA Keys match the keys in device 60 60 61 61 62 -= Notice of US915/CN470/AU915 Frequency band = 61 += 2. Notice of US915/CN470/AU915 Frequency band = 63 63 64 64 If user has problem to work with lorawan server in band US915/AU915/CN470, he can check: 65 65 66 -* What sub-band the server support ? 67 -* What is the sub-band the gateway support ? 68 -* What is the sub-band the end node is using ? 65 +* What **sub-band** the server support ? 66 +* What is the **sub-band** the gateway support ? 67 +* What is the **sub-band** the end node is using ? 69 69 70 70 All of above should match so End Node can properly Join the server and don't have packet lost. 71 71 ... ... @@ -73,21 +73,21 @@ 73 73 74 74 Here are the freuqency tables for these bands as reference: 75 75 76 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/3/3f/US915_FRE_BAND-1.png/600px-US915_FRE_BAND-1.png~|~|height="170" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:US915_FRE_BAND-1.png]]75 +[[image:https://wiki.dragino.com/images/thumb/3/3f/US915_FRE_BAND-1.png/600px-US915_FRE_BAND-1.png||height="170" width="600"]] 77 77 78 78 US915 Channels 79 79 80 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/8/8a/AU915_FRE_BAND-1.png/600px-AU915_FRE_BAND-1.png~|~|height="167" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:AU915_FRE_BAND-1.png]]79 +[[image:https://wiki.dragino.com/images/thumb/8/8a/AU915_FRE_BAND-1.png/600px-AU915_FRE_BAND-1.png||height="167" width="600"]] 81 81 82 82 AU915 Channels 83 83 84 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/3/3a/CN470_FRE_BAND-1.png/600px-CN470_FRE_BAND-1.png~|~|height="205" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:CN470_FRE_BAND-1.png]]83 +[[image:https://wiki.dragino.com/images/thumb/3/3a/CN470_FRE_BAND-1.png/600px-CN470_FRE_BAND-1.png||height="205" width="600"]] 85 85 86 86 CN470 Channels 87 87 88 88 If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server. 89 89 90 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/9/9a/US915_FRE_BAND-2.png/600px-US915_FRE_BAND-2.png~|~|height="288" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:US915_FRE_BAND-2.png]]89 +[[image:https://wiki.dragino.com/images/thumb/9/9a/US915_FRE_BAND-2.png/600px-US915_FRE_BAND-2.png||height="288" width="600"]] 91 91 92 92 TTN FREQUENCY PLAN 93 93 ... ... @@ -94,13 +94,13 @@ 94 94 In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. ) 95 95 96 96 97 -= Why i see data lost/unperiocially uplink data? Even the signal strength is good = 96 += 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good = 98 98 99 99 In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below: 100 100 101 -* End node ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors. 102 -* Gateway ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors. 103 -* LoRaWAN server ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml. 100 +* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors. 101 +* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors. 102 +* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml. 104 104 105 105 When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data. 106 106 ... ... @@ -107,7 +107,7 @@ 107 107 Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success. 108 108 109 109 110 -= Transmision on ABP Mode = 109 += 4. Transmision on ABP Mode = 111 111 112 112 In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server. 113 113 ... ... @@ -120,15 +120,15 @@ 120 120 Disable Frame Counter Check in ABP Mode 121 121 122 122 123 -= Downstream Debug = 122 += 5. Downstream Debug = 124 124 125 -== How it work == 124 +== 5.1 How it work == 126 126 127 127 LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it. 128 128 129 129 Depends on Class A or Class C, the receive windows will be a little difference, 130 130 131 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/1/1a/Downstream_LoRaWAN-1.png/600px-Downstream_LoRaWAN-1.png~|~|height="590" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:Downstream_LoRaWAN-1.png]]130 +[[image:https://wiki.dragino.com/images/thumb/1/1a/Downstream_LoRaWAN-1.png/600px-Downstream_LoRaWAN-1.png||height="590" width="600"]] 132 132 133 133 receive windows for Class A and Class C 134 134 ... ... @@ -138,18 +138,17 @@ 138 138 * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node. 139 139 * This downstream packet must arrive to the end node while RX1 or RX2 is open. 140 140 * This packet must match the frequency of the RX1 or RX2 window. 141 -* This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change. 140 +* This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). **This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.** 142 142 142 +== 5.2 See Debug Info == 143 143 144 - ==SeeDebug Info ==144 +**For LoRaWAN Server** 145 145 146 -For LoRaWAN Server 147 - 148 148 We can check if there is downlink message for this end node, use TTN for example: 149 149 150 150 Configure a downstream to the end device 151 151 152 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/8/82/Downstream_debug_1.png/600px-Downstream_debug_1.png~|~|height="217" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:Downstream_debug_1.png]]150 +[[image:https://wiki.dragino.com/images/thumb/8/82/Downstream_debug_1.png/600px-Downstream_debug_1.png||height="217" width="600"]] 153 153 154 154 Set a downstream in TTN and see it is sent 155 155 ... ... @@ -156,30 +156,35 @@ 156 156 157 157 This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3 158 158 159 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/d/dc/Downstream_debug_2.png/600px-Downstream_debug_2.png~|~|height="245" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:Downstream_debug_2.png]]157 +[[image:https://wiki.dragino.com/images/thumb/d/dc/Downstream_debug_2.png/600px-Downstream_debug_2.png||height="245" width="600"]] 160 160 161 161 Gateway Traffic can see this downstream info 162 162 163 163 164 -For LoRaWAN Gateway 162 +**For LoRaWAN Gateway** 165 165 166 166 When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below: 167 167 168 -[[ ~[~[image:https://wiki.dragino.com/images/thumb/2/21/Downstream_debug_3.png/600px-Downstream_debug_3.png~|~|height="195" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:Downstream_debug_3.png]]166 +[[image:https://wiki.dragino.com/images/thumb/2/21/Downstream_debug_3.png/600px-Downstream_debug_3.png||height="195" width="600"]] 169 169 170 170 Gateway Sent out this packet 171 171 172 172 173 -For End Node 171 +**For End Node** 174 174 175 175 we can use AT Command (AT+CFG) to check the RX1 configure and RX2 configure. as below: 176 176 175 +((( 176 +{{info}} 177 177 {{{AT+RX2FQ=869525000 ---> The RX2 Window frequency 178 178 AT+RX2DR=3 ---> The RX2 DataRate 179 179 AT+RX1DL=1000 ---> Receive Delay 1 180 -AT+RX2DL=2000 ---> Receive Delay 2 181 -}} }180 +AT+RX2DL=2000 ---> Receive Delay 2}}} 181 +{{/info}} 182 182 183 + 184 +))) 185 + 183 183 when the device running, we can see below info: 184 184 185 185 {{{[12502]***** UpLinkCounter= 0 ***** ... ... @@ -204,9 +204,9 @@ 204 204 1:0012345678 205 205 }}} 206 206 207 -== If problem doesn’t solve == 210 +== 5.3 If problem doesn’t solve == 208 208 209 -If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include: 212 +**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:** 210 210 211 211 * End node console to show the transmit freuqency and DR. 212 212 * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. ... ... @@ -214,9 +214,8 @@ 214 214 * End Node traffic (from server UI) to shows end node activity in server. 215 215 216 216 220 += 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency = 217 217 218 -= Downlink Issue ~-~- Packet REJECTED, unsupported frequency = 219 - 220 220 In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink. 221 221 222 222 So if the LoRaWAN server is an AS923 server which ask the gateway to transmit at 923.2Mhz frequency, but the gateway is IN868 frequency band (support 865~~867Mhz to transmit). In the gateway log it will show something like below: ... ... @@ -227,26 +227,34 @@ 227 227 In this case, please double check the gateway frequency and the server frequency band. 228 228 229 229 232 += 7. Decrypt a LoRaWAN Packet = 230 230 231 -= Decrypt a LoRaWAN Packet = 232 - 233 233 ~1. LHT65 End device configure: 234 234 236 +(% class="box infomessage" %) 237 +((( 235 235 Change to ABP Mode: AT+NJM=0 239 +))) 236 236 241 +(% class="box infomessage" %) 242 +((( 237 237 Change to fix frequency: AT+CHS=904900000 244 +))) 238 238 246 +(% class="box infomessage" %) 247 +((( 239 239 Change to fix DR: AT+DR=0 249 +))) 240 240 241 -[[ ~[~[image:https://wiki.dragino.com/images/e/e6/Decrypt_a_LoRaWAN_Packet1.jpg~|~|alt="Decrypt a LoRaWAN Packet1.jpg" height="607" width="558"~]~]>>url:https://wiki.dragino.com/index.php/File:Decrypt_a_LoRaWAN_Packet1.jpg]]251 +[[image:https://wiki.dragino.com/images/e/e6/Decrypt_a_LoRaWAN_Packet1.jpg||alt="Decrypt a LoRaWAN Packet1.jpg" height="607" width="558"]] 242 242 243 243 2. In LG02 , configure to receive above message 244 244 245 -[[ ~[~[image:https://wiki.dragino.com/images/c/c3/Decrypt_a_LoRaWAN_Packet2.jpg~|~|alt="Decrypt a LoRaWAN Packet2.jpg" height="337" width="558"~]~]>>url:https://wiki.dragino.com/index.php/File:Decrypt_a_LoRaWAN_Packet2.jpg]]255 +[[image:https://wiki.dragino.com/images/c/c3/Decrypt_a_LoRaWAN_Packet2.jpg||alt="Decrypt a LoRaWAN Packet2.jpg" height="337" width="558"]] 246 246 247 247 In LG02 console, we can see the hex receive are: 248 248 249 -[[ ~[~[image:https://wiki.dragino.com/images/f/f1/Decrypt_a_LoRaWAN_Packet3.jpg~|~|alt="Decrypt a LoRaWAN Packet3.jpg" height="179" width="558"~]~]>>url:https://wiki.dragino.com/index.php/File:Decrypt_a_LoRaWAN_Packet3.jpg]]259 +[[image:https://wiki.dragino.com/images/f/f1/Decrypt_a_LoRaWAN_Packet3.jpg||alt="Decrypt a LoRaWAN Packet3.jpg" height="179" width="558"]] 250 250 251 251 3. Decode the info in web 252 252 ... ... @@ -262,16 +262,16 @@ 262 262 263 263 [[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]] 264 264 265 -[[ ~[~[image:https://wiki.dragino.com/images/7/77/Decrypt_a_LoRaWAN_Packet4.png~|~|alt="Decrypt a LoRaWAN Packet4.png" height="390" width="558"~]~]>>url:https://wiki.dragino.com/index.php/File:Decrypt_a_LoRaWAN_Packet4.png]]275 +[[image:https://wiki.dragino.com/images/7/77/Decrypt_a_LoRaWAN_Packet4.png||alt="Decrypt a LoRaWAN Packet4.png" height="390" width="558"]] 266 266 267 267 The FRMPayload is the device payload. 268 268 269 269 270 -= Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware = 280 += 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware = 271 271 272 272 Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00. 273 273 274 -= Why do I see a "MIC Mismatch" error message from the server? = 284 += 9. Why do I see a "MIC Mismatch" error message from the server? = 275 275 276 276 1)If the user receives a "MIC Mismatch" message after registering the node on the server. 277 277 ... ... @@ -285,7 +285,7 @@ 285 285 286 286 * If a node is registered with multiple servers, it may also cause the "mic mismatch" error. 287 287 288 -= Why i got the payload only with "0x00" or "AA~=~="? = 298 += 10. Why i got the payload only with "0x00" or "AA~=~="? = 289 289 290 290 * If you are using US915, AU915 and AS923 frequencies.This is normal phenomenon. 291 291