<
From version < 30.1 >
edited by kai
on 2025/03/24 10:10
To version < 23.1 >
edited by Edwin Chen
on 2024/01/10 09:12
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.kai
1 +XWiki.Edwin
Content
... ... @@ -51,13 +51,11 @@
51 51  
52 52  === 1.4.1 Can i use send uplink in short period? ===
53 53  
54 -
55 55  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa or NB-IoT, then the battery life may be decreased.
56 56  
57 57  
58 -=== 1.4.2 Can i replace battery without SPC1520? ===
57 +=== 1.4.2 Can i replace battery with SPC1520? ===
59 59  
60 -
61 61  User can replace the battery with ER26500 without SPC1520, This will work. But will have reduced performance for example
62 62  
63 63  1) Shorter Battery Life.
... ... @@ -97,11 +97,10 @@
97 97  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N-E5%20LoRaWAN%20Temperature_Humidity%20%26%20Illuminance%20Sensor%20User%20Manual/WebHome/image-20220515075440-2.png?width=272&height=338&rev=1.1||alt="image-20220515075440-2.png" height="338" width="272"]]
98 98  
99 99  
100 -= 3. Solar Panel + 3000mAh Li-ion battery =
98 += 3. Solar Panel + 3000mAh Li-on battery =
101 101  
102 102  == 3.1 Internal Structure ==
103 103  
104 -
105 105  Below are the Internal Power Structure for -LS and -NS version.
106 106  
107 107  [[image:image-20231231200632-1.png||height="479" width="933"]]
... ... @@ -109,28 +109,15 @@
109 109  
110 110  == 3.2 Battery Info ==
111 111  
109 +The battery use in -LS and -NS version are 3.7v li-on rechargable battery . Dimension: 803450 x 2 , and 3000mAh capacity. The connector type is PH2.0 2 pin connector.
112 112  
113 -The battery use in -LS and -NS version are 3.7v Li-ion rechargable battery . Dimension: 803450 x 2 , and 3000mAh capacity. The connector type is PH2.0 2 pin connector.
114 114  
112 +== 3.3 Related Document ==
115 115  
116 -== 3.3 Solar Spec ==
117 -
118 -
119 -* Dimension: 103 x 73 mm
120 -* Max Power: 0.9 W
121 -* Voltage at nominal power :5V (±5%)
122 -* Current at nominal power: 180mA (±5%)
123 -* Cell efficient : 22%
124 -* UV resistance
125 -
126 -== 3.4 Related Document ==
127 -
128 -
129 129  * **[[Recharge Circuit. >>https://www.dropbox.com/scl/fo/p9iqzcmivaczpmhwufj6s/h?rlkey=9zq6irrzj46ajy933ghg5uw3m&dl=0]]**
130 130  
131 -== 3.5 Recharge without Solar ==
116 +== 3.4 Recharge without Solar ==
132 132  
133 -
134 134  If user wants to recharge the battery without Solar Panel. Below are the steps
135 135  
136 136  a) Remove the 6v input from solar panel.
... ... @@ -137,7 +137,6 @@
137 137  
138 138  [[image:image-20240109233955-1.png||height="234" width="593"]]
139 139  
140 -
141 141  b) Provide voltage to this connector(XHB2.54-2P) to recharge the battery. (Input Range: DC: 5~~12v)
142 142  
143 143  [[image:image-20240110091157-1.png||height="307" width="599"]]
... ... @@ -145,7 +145,6 @@
145 145  
146 146  = 4. Power Consumption Analyze =
147 147  
148 -== 4.1 Method 1: Use Our Calculate Table ==
149 149  
150 150  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
151 151  
... ... @@ -164,97 +164,6 @@
164 164  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual/WebHome/1675146895108-304.png?rev=1.1||alt="1675146895108-304.png"]]
165 165  
166 166  
167 -== 4.2 Method 2: Manual Calcuation. ==
168 -
169 -=== 4.2.1 For -LB / -LS LoRaWAN models base on ASR6601 ===
170 -
171 -The power consumption mainly include three parts:
172 -
173 -* Sleep Power  : Most time the CPU are in sleep mode. It is around 6uA, So **for one day**, total power consumption: 6uA x 24(hour) = 144 uAh = 0.144mAh (base on batter output voltage)
174 -* Watch Dog Current: Internal Water Dog to monitor Software state: this is very small and same for each device.** for one day**: 0.003mAH
175 -* Sampling Power: The power consume to read sensor for each sampling.
176 -** Example, SN50v3-LB connect to an external sensor, each reading need to use 5V , and sensor require current 10mA and 2 seconds. So each sampling need 10mA x 2 seconds / 3600 = 0.0056mAh ( base on 5v). Assume 90% converter rate from 3.3v to 5v) , we can consider the mAh in 3.3v is 0.0056mAh/90% = **0.0062mAh per sampling**. If one day, SN50v3-LB read this sensor 3 times every hour. So **for one day**, the total power consumption is 0.0062mAh x 3 x 24 = 0.4464 mAh
177 -* Transmit & Receive Power: this power consumption depends on the transmit power and the data rate (DR) settings. They are the same for all -LB and -LS series. Below are the reference
178 -** EU868 band, TXP=0 (Max Power), DR=5 (Shortest Distance) : ~~0.0028mAh (base on 3.3v) (per transmit + receive).
179 -** EU868 band, TXP=0 (Max Power), DR=0 (Longest Distance) :  ~~0.044 mAh (base on 3.3v) (per transmit + receive).
180 -
181 -So for SN50v3 with above sensor, we set 5V output to open 2 seconds every reading and set TDC = 20 minutes. So 72 reading and transmit every day
182 -
183 -The total power consumption is
184 -
185 -* EU868 , Good Signal : 0.144mAh + 0.003mAh + 0.0062mAh * 72 + 0.0028 mAh * 72 = 0.795 mAh per day. For the 8500mAh , if we consider 20% margin, we can use 8500mAh x 80% / 0.795mAh = 8553 days
186 -* EU868 , Poor Signal: 0.144mAh + 0.003mAh + 0.0062mAh * 72 + 0.044 mAh * 72 = 3.7614 mAh per day, For the 8500mAh, if we consider 20% margin, we can use 8500mAh x 80% / 3.7614 mAh = 1807 days
187 -
188 -(((
189 -
190 -)))
191 -
192 -(% class="box warningmessage" %)
193 -(((
194 -Notice, actually deployment situation is more complicate and above calcualtion is base on lab. The calculation is only for reference. It doesn't response for the promising battery life.
195 -)))
196 -
197 -
198 -== 4.3 Method 3: Use AI to calculate. ==
199 -
200 -=== 4.3.1 For CB version: ===
201 -
202 -For example, if you need to inquire about the battery life of the S31-CB, you can refer to the following instructions to inquire about the AI:
203 -
204 -
205 -The S31x-CB using ER26500 + SPC1520 8500mAh battery packs.
206 -
207 -~1. CB version of AI questioning techniques:
208 -
209 -Battery capacity is 8500mAh, self-discharge <2%/year
210 -Sleep current:  19.618uA
211 -Sampling current&Duration:  20mA. 10 seconds
212 -UDP Transmit/Receive Current & Duration:  58mA, 36 sec.
213 -MQTT protocol transmit current & duration:  63mA, 41 seconds
214 -TCP protocol transmit current & duration:  62mA, 41 seconds
215 -GSP positioning current & duration:  87.0756mA, 44.162 seconds
216 -Timed Acquisition Current & Duration:  8.78151mA, 0.125338s
217 -Acquisition every 120 minutes, launching once, GPS positioning once a day ,15 minutes timed acquisition once
218 -How many years can the battery be used in different transmission modes?
219 -
220 -
221 -**AI Response Results:**
222 -
223 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-CBS31B-CB--NB-IoTLTE-M_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250314084804-1.png?width=557&height=1828&rev=1.1||alt="image-20250314084804-1.png"]]
224 -
225 -(% class="wikigeneratedid" %)
226 -
227 -
228 -=== 4.3.2. For CS version: ===
229 -
230 -
231 -For example, if you need to inquire about the battery life of the S31-CS, you can refer to the following instructions to inquire about the AI:
232 -
233 -The S31x-CS uses a 3000mAh Li-Ion battery.
234 -
235 -Battery capacity is 8500mAh, self-discharge <2%/year
236 -Sleep current: 50.409uA
237 -Sampling current&Duration:  20mA. 10 seconds
238 -UDP Transmit/Receive Current & Duration:  58mA, 36 seconds.
239 -MQTT protocol transmit current & duration:  63mA, 41 seconds
240 -TCP protocol transmit current & duration:  62mA, 41 seconds
241 -GSP positioning current & duration:  87.0756mA, 44.162 seconds
242 -Timed Acquisition Current & Duration:  8.78151mA, 0.125338 seconds
243 -Acquisition every 120 minutes, launching once, GPS positioning once a day ,15 minutes timed acquisition once
244 -How many years can the battery be used in different transmission modes?
245 -
246 -**AI Response Results:**
247 -
248 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-CBS31B-CB--NB-IoTLTE-M_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250314093630-2.png?width=523&height=1621&rev=1.1||alt="image-20250314093630-2.png"]]
249 -
250 -(% class="wikigeneratedid" %)
251 -
252 -
253 -=== 4.3.3. For LB version: ===
254 -
255 -
256 -
257 -
258 258  = 5. Debug for Battery running out shortly =
259 259  
260 260  
... ... @@ -268,5 +268,3 @@
268 268  User can also send us (support(at)dragino.com) record so check. a record like below with the info:** Battery**, **uplink time**, **DR**.
269 269  
270 270  [[image:image-20230418000422-1.png]]
271 -
272 -
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0