<
From version < 27.1 >
edited by kai
on 2025/03/21 16:24
To version < 16.1 >
edited by Edwin Chen
on 2023/12/31 20:07
>
Change comment: Uploaded new attachment "image-20231231200632-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.kai
1 +XWiki.Edwin
Content
... ... @@ -51,13 +51,11 @@
51 51  
52 52  === 1.4.1 Can i use send uplink in short period? ===
53 53  
54 -
55 55  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa or NB-IoT, then the battery life may be decreased.
56 56  
57 57  
58 -=== 1.4.2 Can i replace battery without SPC1520? ===
57 +=== 1.4.2 Can i replace battery with SPC1520? ===
59 59  
60 -
61 61  User can replace the battery with ER26500 without SPC1520, This will work. But will have reduced performance for example
62 62  
63 63  1) Shorter Battery Life.
... ... @@ -97,56 +97,9 @@
97 97  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N-E5%20LoRaWAN%20Temperature_Humidity%20%26%20Illuminance%20Sensor%20User%20Manual/WebHome/image-20220515075440-2.png?width=272&height=338&rev=1.1||alt="image-20220515075440-2.png" height="338" width="272"]]
98 98  
99 99  
100 -= 3. Solar Panel + 3000mAh Li-ion battery =
98 += 3. Power Consumption Analyze =
101 101  
102 -== 3.1 Internal Structure ==
103 103  
104 -
105 -Below are the Internal Power Structure for -LS and -NS version.
106 -
107 -[[image:image-20231231200632-1.png||height="479" width="933"]]
108 -
109 -
110 -== 3.2 Battery Info ==
111 -
112 -
113 -The battery use in -LS and -NS version are 3.7v Li-ion rechargable battery . Dimension: 803450 x 2 , and 3000mAh capacity. The connector type is PH2.0 2 pin connector.
114 -
115 -
116 -== 3.3 Solar Spec ==
117 -
118 -
119 -* Dimension: 103 x 73 mm
120 -* Max Power: 0.9 W
121 -* Voltage at nominal power :5V (±5%)
122 -* Current at nominal power: 180mA (±5%)
123 -* Cell efficient : 22%
124 -* UV resistance
125 -
126 -== 3.4 Related Document ==
127 -
128 -
129 -* **[[Recharge Circuit. >>https://www.dropbox.com/scl/fo/p9iqzcmivaczpmhwufj6s/h?rlkey=9zq6irrzj46ajy933ghg5uw3m&dl=0]]**
130 -
131 -== 3.5 Recharge without Solar ==
132 -
133 -
134 -If user wants to recharge the battery without Solar Panel. Below are the steps
135 -
136 -a) Remove the 6v input from solar panel.
137 -
138 -[[image:image-20240109233955-1.png||height="234" width="593"]]
139 -
140 -
141 -b) Provide voltage to this connector(XHB2.54-2P) to recharge the battery. (Input Range: DC: 5~~12v)
142 -
143 -[[image:image-20240110091157-1.png||height="307" width="599"]]
144 -
145 -
146 -= 4. Power Consumption Analyze =
147 -
148 -== 4.1 Method 1: Use Our Calculate Table ==
149 -
150 150  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
151 151  
152 152  (% style="color:blue" %)**Instruction to use as below:**
... ... @@ -164,46 +164,9 @@
164 164  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual/WebHome/1675146895108-304.png?rev=1.1||alt="1675146895108-304.png"]]
165 165  
166 166  
167 -== 4.2 Method 2: Manual Calcuation. ==
118 += 4. Debug for Battery running out shortly =
168 168  
169 -=== 4.2.1 For -LB / -LS LoRaWAN models base on ASR6601 ===
170 170  
171 -The power consumption mainly include three parts:
172 -
173 -* Sleep Power  : Most time the CPU are in sleep mode. It is around 6uA, So **for one day**, total power consumption: 6uA x 24(hour) = 144 uAh = 0.144mAh (base on batter output voltage)
174 -* Watch Dog Current: Internal Water Dog to monitor Software state: this is very small and same for each device.** for one day**: 0.003mAH
175 -* Sampling Power: The power consume to read sensor for each sampling.
176 -** Example, SN50v3-LB connect to an external sensor, each reading need to use 5V , and sensor require current 10mA and 2 seconds. So each sampling need 10mA x 2 seconds / 3600 = 0.0056mAh ( base on 5v). Assume 90% converter rate from 3.3v to 5v) , we can consider the mAh in 3.3v is 0.0056mAh/90% = **0.0062mAh per sampling**. If one day, SN50v3-LB read this sensor 3 times every hour. So **for one day**, the total power consumption is 0.0062mAh x 3 x 24 = 0.4464 mAh
177 -* Transmit & Receive Power: this power consumption depends on the transmit power and the data rate (DR) settings. They are the same for all -LB and -LS series. Below are the reference
178 -** EU868 band, TXP=0 (Max Power), DR=5 (Shortest Distance) : ~~0.0028mAh (base on 3.3v) (per transmit + receive).
179 -** EU868 band, TXP=0 (Max Power), DR=0 (Longest Distance) :  ~~0.044 mAh (base on 3.3v) (per transmit + receive).
180 -
181 -So for SN50v3 with above sensor, we set 5V output to open 2 seconds every reading and set TDC = 20 minutes. So 72 reading and transmit every day
182 -
183 -The total power consumption is
184 -
185 -* EU868 , Good Signal : 0.144mAh + 0.003mAh + 0.0062mAh * 72 + 0.0028 mAh * 72 = 0.795 mAh per day. For the 8500mAh , if we consider 20% margin, we can use 8500mAh x 80% / 0.795mAh = 8553 days
186 -* EU868 , Poor Signal: 0.144mAh + 0.003mAh + 0.0062mAh * 72 + 0.044 mAh * 72 = 3.7614 mAh per day, For the 8500mAh, if we consider 20% margin, we can use 8500mAh x 80% / 3.7614 mAh = 1807 days
187 -
188 -(((
189 -
190 -)))
191 -
192 -(% class="box warningmessage" %)
193 -(((
194 -Notice, actually deployment situation is more complicate and above calcualtion is base on lab. The calculation is only for reference. It doesn't response for the promising battery life.
195 -)))
196 -
197 -
198 -== 4.3 Method 3: Use AI to calculate. ==
199 -
200 -
201 -
202 -
203 -
204 -= 5. Debug for Battery running out shortly =
205 -
206 -
207 207  Below factors will affect the battery life. If the battery runs out very fast unexpectedly. Please check below points:
208 208  
209 209  1. Did you connect an external sensor? What is the power consumption of this sensor?
... ... @@ -214,5 +214,3 @@
214 214  User can also send us (support(at)dragino.com) record so check. a record like below with the info:** Battery**, **uplink time**, **DR**.
215 215  
216 216  [[image:image-20230418000422-1.png]]
217 -
218 -
image-20240109233955-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -535.6 KB
Content
image-20240110091157-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -238.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0