Version 139.1 by Edwin Chen on 2025/01/22 00:02

Show last authors
1 ​**Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8
9
10 = 1. The use of this guideline =
11
12
13 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
14
15
16 = 2. Attach Network =
17
18 == 2.1 General Configure to attach network ==
19
20
21 To attache end nodes to NB-IoT or LTE-M Network, You need to:
22
23 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
24 1. Power Off End Node ( See below for the power off/on position)
25 1. Insert the SIM card to Sensor. ( See below for direction)
26 1. Power On End Node
27 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
28
29 [[image:image-20240602220856-1.png]]
30
31
32 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230808205045-1.png?width=438&height=293&rev=1.1||alt="image-20230808205045-1.png"]]
33
34
35 After doing above, the end nodes should be able to attach to NB-IoT network .
36
37 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
38
39 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
40
41 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
42
43 Make sure you use a the NB-IoT or LTE-M SIM card.
44
45 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
46 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
47 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
48 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
49
50 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
51 )))|(% style="width:351px" %)(((
52 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
53 )))|(% style="width:120px" %)UK: Band20
54 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
55 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
56
57 == 2.2 Speed Up Network Attach time ==
58
59
60 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
61
62 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
63
64 Attache to 1NCE card for Australia use:
65
66 * AT+COPS=1,2,"50501",8                                                 
67 * AT+QCFG="band",0,0x8000000,0x8000000,1
68
69 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
70
71 AT+QENG="servingcell"
72 +QENG: "servingcell","NOCONN","eMTC","FD
73 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
74
75
76 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
77
78 === **1. Configure Frequency Band** ===
79
80 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
81
82 **<GSM_bandval>:**
83
84 0 No change 
85 0x1 EGSM900
86 0x2 DCS1800
87 0x4 GSM850 
88 0x8 PCS1900 
89 0xF All of the supported bands above
90
91 **<eMTC_bandval>:**
92
93 0 No change 
94 0x1  LTE B1
95 0x2  LTE B2 
96 0x4  LTE B3 
97 0x8  LTE B4 
98 0x10  LTE B5 
99 0x80  LTE B8 
100 0x800  LTE B12 
101 0x1000  LTE B13 
102 0x20000  LTE B18 
103 0x40000  LTE B19 
104 0x80000  LTE B20 
105 0x1000000  LTE B25 
106 0x2000000  LTE B26 
107 0x4000000  LTE B27 
108 0x8000000  LTE B28 
109 0x40000000  LTE B31 
110 0x20000000000000000  LTE B66 
111 0x800000000000000000  LTE B72 
112 0x1000000000000000000  LTE B73 
113 0x1000000000000000000000  LTE B85
114
115 **<NB-IoT_bandval>:**
116
117 0 No change 
118 0x1  LTE B1
119 0x2  LTE B2 
120 0x4  LTE B3 
121 0x8  LTE B4 
122 0x10  LTE B5 
123 0x80  LTE B8 
124 0x800  LTE B12 
125 0x1000  LTE B13 
126 0x20000  LTE B18 
127 0x40000  LTE B19 
128 0x80000  LTE B20 
129 0x1000000  LTE B25 
130 0x8000000  LTE B28 
131 0x40000000  LTE B31 
132 0x20000000000000000  LTE B66
133
134 0x400000000000000000  LTE B71
135 0x800000000000000000  LTE B72 
136 0x1000000000000000000  LTE B73 
137 0x1000000000000000000000  LTE B85
138
139 For example, setting the LTE-M network frequency band to 3.
140
141 AT+QCFG="band",0xF,0x4,0,1
142
143 When searching for all bands, the value of this command is set to:
144
145 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
146
147
148 === **2. Configure search network sequence** ===
149
150 AT+QCFG="nwscanseq",<scanseq>,1
151
152 <scanseq>:
153
154 00 Automatic (eMTC → NB-IoT → GSM) 
155 01 GSM 
156 02 eMTC 
157 03 NB-IoT
158
159 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
160
161
162 === **3. Configure Network Category to be Searched for under LTE RAT** ===
163
164 AT+QCFG="iotopmode",mode,1
165
166 0 eMTC 
167 1 NB-IoT 
168 2 eMTC and NB-IoT
169
170
171 === **4. AT command to set frequency band and network category** ===
172
173 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
174
175 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
176
177 **Example :**
178
179 Taking the use of 1nce cards in **the United States** as an example.
180
181 AT+APN=iot.1nce.net  ~/~/set APN
182
183 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
184
185 AT+IOTMOD=0  ~/~/ Set  eMTC Network
186
187 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
188
189
190 = 3. Configure to connect to different servers =
191
192 == 3.1 General UDP Connection ==
193
194
195 The NB-IoT Sensor can send packet to server use UDP protocol.
196
197
198 === 3.1.1 Simulate UDP Connection by PC tool ===
199
200
201 We can use PC tool to simulate UDP connection to make sure server works ok.
202
203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
204
205
206 === 3.1.2 Configure NB-IoT Sensor ===
207
208 ==== 3.1.2.1 AT Commands ====
209
210
211 (% style="color:blue" %)**AT Commands:**
212
213 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
214
215 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
216
217 [[image:image-20240819102802-1.png]]
218
219
220 ==== 3.1.2.2 Uplink Example ====
221
222
223 [[image:image-20240819105418-8.png||height="611" width="1287"]]
224
225
226 == 3.2 General COAP Connection ==
227
228
229 The NB-IoT Sensor can send packet to server use COAP protocol.
230
231 Below are the commands.
232
233 (% style="color:blue" %)**AT Commands:**
234
235 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
236
237 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
238
239 * (% style="color:#037691" %)**AT+URI1=11,"i"**  (%%) ~/~/  Configure CoAP Message Options
240 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
241
242 [[image:image-20240819103212-2.png]]
243
244
245 === 3.2.1 Uplink Example ===
246
247
248 [[image:image-20240819103909-4.png||height="453" width="955"]]
249
250
251 == 3.2 General MQTT Connection ==
252
253
254 The NB-IoT Sensor can send packet to server use MQTT protocol.
255
256 Below are the commands.
257
258 (% style="color:blue" %)**AT Commands:**
259
260 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
261
262 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
263
264 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
265
266 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
267
268 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
269
270 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
271
272 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
273
274 [[image:image-20240819105003-7.png||height="613" width="458"]]
275
276
277 [[image:image-20240819104942-6.png||height="702" width="974"]]
278
279 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
280
281
282 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
283
284 === 3.3.1 Get MQTT Credentials ===
285
286
287 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
288
289 [[image:image-20240819173602-1.png||height="401" width="743"]]
290
291 [[image:image-20240819173706-3.png||height="595" width="597"]]
292
293
294 === 3.3.2 Simulate with MQTT.fx ===
295
296 ==== 3.3.2.1 Establish MQTT Connection ====
297
298
299 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
300
301 [[image:image-20240819173826-4.png||height="534" width="734"]]
302
303 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
304
305 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
306
307 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
308
309 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
310
311 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
312
313 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
314
315
316 [[image:image-20240819174033-5.png]]
317
318 [[image:image-20240819174209-6.png]]
319
320 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
321
322 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
323
324 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
325
326 Where 63 and 67 are the value to be published to field1 & field2.
327
328 (% style="color:blue" %)**Result: **
329
330 [[image:image-20240819174314-7.png||height="469" width="785"]]
331
332
333 === 3.3.3 Configure NB-IoT Sensor for connection ===
334
335 ==== 3.3.3.1 AT Commands: ====
336
337
338 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
339
340 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
341
342 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
343
344 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
345
346 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
347
348 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
349
350 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
351
352 ==== 3.3.3.2 Uplink Examples ====
353
354
355 [[image:image-20240819174540-8.png]]
356
357 For SE01-NB
358
359 For DDS20-NB
360
361 For DDS45-NB
362
363 For DDS75-NB
364
365 For NMDS120-NB
366
367 For SPH01-NB
368
369 For NLM01-NB
370
371 For NMDS200-NB
372
373 For CPN01-NB
374
375 For DS03A-NB
376
377 For SN50V3-NB
378
379
380 ==== 3.3.3.3 Map fields to sensor value ====
381
382
383 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
384
385 [[image:image-20240819174610-9.png]]
386
387 [[image:image-20240819174618-10.png]]
388
389 Below is the NB-IoT Product Table show the mapping.
390
391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
392 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:150px" %)Field3|(% style="background-color:#4f81bd; color:white; width:141px" %)Field4|(% style="background-color:#4f81bd; color:white; width:138px" %)Field5|(% style="background-color:#4f81bd; color:white; width:135px" %)Field6|(% style="background-color:#4f81bd; color:white; width:134px" %)Field7|(% style="background-color:#4f81bd; color:white; width:138px" %)Field8|(% style="background-color:#4f81bd; color:white; width:85px" %)Field9|(% style="background-color:#4f81bd; color:white; width:80px" %)Field10
393 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:150px" %)conduct|(% style="width:141px" %)dielectric_constant|(% style="width:138px" %)Battery|(% style="width:135px" %)RSSI|(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
396 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
398 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
399 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% colspan="1" rowspan="1" style="width:80px" %)
400 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
401 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
402 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:150px" %)door open duration|(% style="width:141px" %)calc flag|(% style="width:138px" %)Battery|(% style="width:135px" %)RSSI|(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
403 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:150px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:141px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:138px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:135px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:134px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:138px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:85px" %)Battery|(% colspan="1" rowspan="1" style="width:80px" %)RSSI
404 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:150px" %)RSSI|(% colspan="1" rowspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:138px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:135px" %)adc0|(% colspan="1" rowspan="1" style="width:134px" %)Temperature |(% colspan="1" rowspan="1" style="width:138px" %)Humidity|(% colspan="1" rowspan="1" style="width:85px" %) |(% colspan="1" rowspan="1" style="width:80px" %)
405 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" style="width:138px" %)exit_state/input PA4|(% colspan="1" style="width:135px" %)adc0|(% colspan="1" style="width:134px" %)distance|(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:138px" %)exit_state/input PA4|(% colspan="1" style="width:135px" %)adc1|(% colspan="1" style="width:134px" %)Temperature|(% colspan="1" style="width:138px" %)Humidity|(% colspan="1" style="width:85px" %)adc4|(% colspan="1" style="width:80px" %)
407 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" style="width:138px" %)adc0|(% colspan="1" style="width:135px" %)exit_state/input PA4|(% colspan="1" style="width:134px" %)DS18B20 Temp2|(% colspan="1" style="width:138px" %)DS18B20 Temp3|(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
408 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" style="width:138px" %)adc0|(% colspan="1" style="width:135px" %)exit_state/input PA4|(% colspan="1" style="width:134px" %)Weight|(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
409 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)count|(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:135px" %) |(% colspan="1" style="width:134px" %) |(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
410
411 == 3.4 [[Datacake>>https://datacake.co/]] ==
412
413 (% class="wikigeneratedid" %)
414 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
415
416 (% class="wikigeneratedid" %)
417 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
418
419 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
420
421 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
422
423 === 3.4.1 For device Already has template ===
424
425 ==== 3.4.1.1 Create Device ====
426
427
428 (% style="color:blue" %)**Add Device**(%%) in DataCake.
429
430 [[image:image-20240820110003-1.png]]
431
432 [[image:image-20240820110017-2.png]]
433
434 (% style="color:blue" %)**Choose the correct model**(%%) from template.
435
436 [[image:image-20240820110031-3.png]]
437
438 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
439
440 [[image:image-20240820110048-4.png]]
441
442 [[image:image-20240820110103-5.png]]
443
444 [[image:image-20240820110114-6.png]]
445
446
447 === 3.4.2 For Device already registered in DataCake before shipped ===
448
449 ==== 3.4.2.1 Scan QR Code to get the device info ====
450
451
452 Users can use their phones or computers to scan QR codes to obtain device data information.
453
454 [[image:image-20240820110129-7.png]]
455
456 [[image:image-20240820110218-9.png]]
457
458
459 ==== 3.4.2.2 Claim Device to User Account ====
460
461
462 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
463
464
465 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
466
467
468 **Step1: Add a device**
469
470 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
471
472
473 **Step2: Choose your device type,please select dragino NB-IOT device**
474
475 [[image:image-20240820110247-11.png]]
476
477
478 **Step3: Choose to create a new device**
479
480 [[image:image-20240820111016-12.png]]
481
482
483 **Step4: Fill in the device ID of your NB device**
484
485 [[image:image-20240820111101-13.png]]
486
487
488 **Step5: Please select your device plan according to your needs and complete the creation of the device**
489
490 [[image:image-20240820111113-14.png]]
491
492
493 **Step6: Please add the decoder at the payload decoder of the device configuration.**
494
495 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
496
497 [[image:image-20240820111236-15.png]]
498
499 [[image:image-20240820111248-16.png]]
500
501
502 **Step7: Add the output of the decoder as a field**
503
504 [[image:image-20240820111259-17.png]]
505
506
507 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
508
509 [[image:image-20240820111312-18.png]]
510
511 [[image:image-20240820111322-19.png]]
512
513 [[image:image-20240820111333-20.png]]
514
515
516 === 3.4.4 For device have not configured to connect to DataCake ===
517
518
519 (% class="lead" %)
520 Use AT command for connecting to DataCake
521
522 (% style="color:blue" %)**AT+PRO=2,0**
523
524 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
525
526
527 == 3.5 Node-Red (via MQTT) ==
528
529 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
530
531
532 Take S31-NB UDP protocol as an example.
533
534 Dragino provides input flow examples for the sensors.
535
536 User can download the required JSON file through Dragino Node-RED input flow template.
537
538 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
539
540 We can directly import the template.
541
542 The templates for S31-NB and NB95S31B are the same.
543
544 [[image:image-20240820111353-21.png]]
545
546 Please select the NB95S31B template.
547
548 [[image:image-20240820111405-22.png]]
549
550 [[image:image-20240820111418-23.png]]
551
552 [[image:image-20240820111427-24.png]]
553
554 Successfully imported template.
555
556 [[image:image-20240820111438-25.png]]
557
558 Users can set UDP port.
559
560 [[image:image-20240820111448-26.png]]
561
562
563 === 3.5.2 Simulate Connection ===
564
565
566 We have completed the configuration of UDP. We can try sending packets to node red.
567
568 [[image:image-20240820111504-27.png]]
569
570 [[image:image-20240820111515-28.png]]
571
572
573 === 3.5.3 Configure NB-IoT Sensors ===
574
575
576 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
577 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
578 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
579 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
580 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
581 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
582
583 == 3.6 ThingsBoard.Cloud (via MQTT) ==
584
585 === 3.6.1 Configure ThingsBoard ===
586
587 ==== 3.6.1.1 Create Device ====
588
589
590 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
591
592 [[image:image-20240820112210-29.png]]
593
594
595 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
596
597
598 (% style="color:blue" %)**Uplink Converter**
599
600 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
601
602 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
603
604 [[image:image-20240820112222-30.png]]
605
606 (% style="color:blue" %)**Downlink Converter**
607
608 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
609
610 [[image:image-20240820112236-31.png]]
611
612 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
613
614
615 ==== 3.6.1.3 MQTT Integration Setup ====
616
617
618 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
619
620 [[image:image-20240820112247-32.png]]
621
622 * The next steps is to add the recently created uplink and downlink converters;
623
624 [[image:image-20240820112302-33.png]]
625
626 [[image:image-20240820112316-34.png]]
627
628 (% style="color:blue" %)**Add a topic filter:**
629
630 Consistent with the theme of the node setting.
631
632 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
633
634 [[image:image-20240820112330-35.png]]
635
636
637 === 3.6.2 Simulate with MQTT.fx ===
638
639 [[image:image-20240820112340-36.png]]
640
641 [[image:image-20240820112351-37.png]]
642
643
644 === 3.6.3 Configure NB-IoT Sensor ===
645
646
647 (% style="color:blue" %)**AT Commands**
648
649 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
650
651 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
652
653 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
654
655 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
656
657 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
658
659 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
660
661 Test Uplink by click the button for 1 second
662
663 [[image:image-20240820112404-38.png]]
664
665 [[image:image-20240820112416-39.png]]
666
667 [[image:image-20240820112426-40.png]]
668
669
670 == 3.7 ThingsBoard.Cloud (via COAP) ==
671
672 === 3.7.1 Configure ThingsBoard ===
673
674 ==== 3.7.1.1 Create Uplink & Downlink Converter ====
675
676
677 (% style="color:blue" %)**Uplink Converter**
678
679 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
680
681 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“COAP Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
682
683 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729141300-1.png?width=1115&height=552&rev=1.1||alt="image-20240729141300-1.png" height="579" width="1168"]]
684
685
686 (% style="color:blue" %)**Downlink Converter**
687
688 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external COAP broker.
689
690 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729142505-3.png?width=1023&height=507&rev=1.1||alt="image-20240729142505-3.png" height="579" width="1168"]]
691
692
693 ==== 3.7.1.2 COAP Integration Setup ====
694
695
696 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“CoAP Integration”**(%%), select type **COAP    **(% style="color:blue" %);
697
698 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729144058-4.png?width=1021&height=506&rev=1.1||alt="image-20240729144058-4.png" height="583" width="1176"]]
699
700
701 The next steps is to add the recently created uplink converters;
702
703 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729150142-5.png?width=1023&height=507&rev=1.1||alt="image-20240729150142-5.png" height="591" width="1193"]]
704
705
706 ==== 3.7.1.3 Add COAP Integration ====
707
708 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729161543-9.png?width=1009&height=500&rev=1.1||alt="image-20240729161543-9.png" height="590" width="1191"]]
709
710
711 === 3.7.2 Node Configuration(Example: Connecting to the Thingsboard platform) ===
712
713 ==== 3.7.2.1 Instruction Description ====
714
715
716 * AT+PRO=1,0(HEX format uplink)  &AT+PRO=1,5(JSON format uplink)
717 * AT+SERVADDR=COAP Server Address,5683
718
719 Example: AT+SERVADDR=int.thingsboard.cloud,5683(The address is automatically generated when the COAP integration is created)
720
721 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729172305-12.png?width=624&height=361&rev=1.1||alt="image-20240729172305-12.png" height="417" width="721"]]
722
723 Note:The port for the COAP protocol has been fixed to 5683
724
725
726 * AT+URL1=11,"i"
727 * AT+URL2=11,"Needs to be consistent with the CoAP endpoint URL in the platform"
728 *
729
730 -CB devices using a (% style="color:red" %)**BG95-M2**(%%) module, you need to configure (% style="color:red" %)**TWO**(%%) URL commands,
731
732 e.g.
733
734 * AT+URL1=11, "i"
735 * AT+URL2=11,"faaaa241f-af4a-b780-4468-c671bb574858"
736
737 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729172500-14.png?width=700&height=403&rev=1.1||alt="image-20240729172500-14.png" height="413" width="718"]]
738
739
740 == 3.8 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
741
742 === 3.8.1 Create device & Get Credentials ===
743
744
745 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
746
747 [[image:image-20240820112516-41.png]]
748
749 [[image:image-20240820112526-42.png]]
750
751 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
752
753 [[image:image-20240820112539-43.png]]
754
755 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
756
757 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
758
759 * (% style="color:#037691" %)**Profile Name: “Any name”**
760
761 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
762
763 * (% style="color:#037691" %)**Broker Port: 8883**
764
765 * (% style="color:#037691" %)**Client ID: “Any value”**
766
767 (% style="color:blue" %)**On the section User credentials, set the following information:**
768
769 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
770
771 * (% style="color:#037691" %)**Password: “Your device token”**
772
773 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
774
775 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
776
777 (% style="color:blue" %)**AT command:**
778
779 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
780
781 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
782
783 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
784
785 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
786
787 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
788
789 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
790
791 === 3.8.2 Simulate with MQTT.fx ===
792
793
794 [[image:image-20240820112552-44.png]]
795
796 [[image:image-20240820112604-45.png]]
797
798 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
799
800 [[image:image-20240820112615-46.png]]
801
802 [[image:image-20240820112626-47.png]]
803
804
805 === 3.8.3 tago data ===
806
807
808 [[image:image-20240820112637-48.png]]
809
810 [[image:image-20240820112647-49.png]]
811
812
813 == 3.9 TCP Connection ==
814
815
816 (% style="color:blue" %)**AT command:**
817
818 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
819
820 * (% style="color:#037691" %)**AT+PRO=4,5   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
821
822 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
823
824 (% style="color:blue" %)**Sensor Console Output when Uplink:**
825
826 [[image:image-20240820112704-50.png]]
827
828 (% style="color:blue" %)**See result in TCP Server:**
829
830 [[image:image-20240820112716-51.png]]
831
832
833 == 3.10 AWS Connection ==
834
835
836 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
837
838
839 = 4. COAP/UDP/MQTT/TCP downlink =
840
841 == 4.1 MQTT (via MQTT.fx) ==
842
843
844 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
845
846 **1.** Configure node MQTT connection (via MQTT.fx):
847
848 (% style="color:blue" %)**AT command:**
849
850 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
851
852 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
853
854 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
855
856 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
857
858 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
859
860 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
861
862 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
863
864 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
865
866
867 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
868
869 [[image:image-20240820112813-54.png]]
870
871
872 **3. **The downlink command can be successfully sent only when the downlink port is open.
873
874 The downlink port is opened for about 3 seconds after uplink packets are sent.
875
876 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
877
878 [[image:image-20240820112824-55.png]]
879
880 [[image:image-20240820112835-56.png]]
881
882 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
883
884
885 == 4.2 UDP (via Thingseye) ==
886
887
888 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
889
890 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
891
892 [[image:image-20240820141843-2.png||height="546" width="821"]]
893
894 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
895
896 [[image:image-20240820143316-3.png||height="555" width="1170"]]
897
898 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
899
900 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
901
902 [[image:image-20240820143820-4.png||height="554" width="1168"]]
903
904 After the command is successfully added, the platform will send the command down on the node's next uplink.
905
906 [[image:image-20240820144913-6.png||height="585" width="1232"]]
907
908 [[image:image-20240820145133-7.png||height="582" width="1227"]]
909
910 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
911
912 [[image:image-20240820145309-8.png]]
913
914
915 = 5. GPS positioning function =
916
917 == 1. Turn on GPS function ==
918
919
920 (% class="wikigeneratedid" %)
921 AT+GPS=1 or 0  ~/~/ GPS function on or off
922
923
924 == 2. Extend the time to turn on GNSS ==
925
926
927 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
928
929
930 == 3. Get or set GPS positioning interval in units of hour ==
931
932
933 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
934
935
936 = 6. FAQ =
937
938 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
939
940
941 The NB series has the feature for Multi Sampling and one uplink. See one of them
942
943 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
944
945 User can use this feature for below purpose:
946
947 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
948 1. Give more sampling data points.
949 1. Increase reliable in transmission. For example. If user set
950 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
951 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
952 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
953 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
954
955 == 6.2 Why the uplink JSON format is not standard? ==
956
957
958 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
959
960 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
961
962 [[image:image-20240820112848-57.png]]
963
964
965 = 7. Trouble Shooting: =
966
967 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
968
969
970 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
971
972 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
973
974 [[image:image-20240820112859-58.png]]
975
976 If fail to attach network, it will shows signal 99. as below:
977
978 [[image:image-20240820112908-59.png]]
979
980 (% class="lead" %)
981 When see this issue, below are the checklist:
982
983 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
984 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
985 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
986 * Check if the device is attached to Carrier network but reject. (need to check with operator).
987 * Check if the antenna is connected firmly.
988
989 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
990
991
992 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
993
994
995 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
996
997 [[image:image-20240820113015-60.png]]
998
999
1000 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
1001
1002 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
1003 === UDP: ===
1004
1005 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
1006 Its downlink command is the same as the AT command, but brackets are required.
1007 Example:
1008
1009 {AT+TDC=300}
1010
1011
1012 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
1013 === MQTT: ===
1014
1015 Json:
1016
1017 The Json format in MQTT mode needs to be configured with all commands.
1018 If you have configurations that need to be changed, please change them in the template below.
1019 Template:
1020
1021 {
1022 "AT+SERVADDR":"119.91.62.30,1882",
1023 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
1024 "AT+UNAME":"usenamedragino",
1025 "AT+PWD":"passworddragino",
1026 "AT+PUBTOPIC":"123",
1027 "AT+SUBTOPIC":"321",
1028 "AT+TDC":"7200",
1029 "AT+INTMOD":"0",
1030 "AT+APN":"NULL",
1031 "AT+5VT":"0",
1032 "AT+PRO":"3,5",
1033 "AT+TR":"900",
1034 "AT+NOUD":"0",
1035 "AT+CSQTIME":"5",
1036 "AT+DNSTIMER":"0",
1037 "AT+TLSMOD":"0,0",
1038 "AT+MQOS":"0",
1039 "AT+TEMPALARM1":"0",
1040 "AT+TEMPALARM2":"10",
1041 "AT+TEMPALARM3":"0"
1042 }
1043
1044 Hex:
1045
1046 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
1047
1048 The supported commands are consistent with LoRaWAN's hex commands.
1049 Please refer to the following link to obtain the hex format:
1050
1051 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1052
1053
1054 == 7.4 What if the signal is good but the domain name resolution fails? ==
1055
1056
1057 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
1058
1059 [[image:image-20240827150705-6.png||height="489" width="687"]]
1060
1061 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
1062
1063 * Set the DNS
1064
1065 (% style="color:blue" %)**AT Command: AT+GDNS**
1066
1067 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
1068
1069 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
1070
1071 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1072
1073 Example:
1074
1075 [[image:image-20240827150121-5.png||height="473" width="676"]][[image:image-20240827145055-4.png||height="474" width="665"]]
1076
1077
1078 == 7.5 GPS debugging ==
1079
1080
1081 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1082
1083 [[image:image-20240903104250-9.png||height="275" width="614"]]
1084
1085
1086 [[image:image-20240903104431-10.png||height="291" width="621"]]
1087
1088
1089 === 7.5.1 GPS commands ===
1090
1091
1092 The following are three related AT commands that introduce GPS functions.
1093
1094 * **Turn on/off GPS**
1095
1096 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1097
1098 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1099
1100 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1101
1102 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1103
1104 Format: Command Code (0x11) followed by 1 byte.
1105
1106 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1107
1108 * **Set GNSS open time**
1109
1110 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1111
1112 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1113
1114 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1115
1116 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1117
1118 Format: Command Code (0x10) followed by 2 bytes.
1119
1120 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1121
1122 * **Set GPS positioning interval**
1123
1124 Feature: Set GPS positioning interval (unit: hour).
1125
1126 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1127
1128 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1129
1130 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1131
1132 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1133
1134 Format: Command Code (0x12) followed by 3 bytes.
1135
1136 Example: 24 hours:  24(D)=0x18(H)
1137
1138 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1139
1140
1141 === 7.5.2 GPS workflow ===
1142
1143
1144 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1145
1146 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1147
1148 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1149
1150 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1151
1152 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1153
1154 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1155
1156 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1157
1158
1159 === 7.5.3 GPS debugging methods ===
1160
1161
1162 In summary, we can deduce the methods of debugging GPS:
1163
1164 * **Check whether the GPS function is enabled.**
1165
1166 [[image:image-20240903102327-5.png||height="271" width="529"]]
1167
1168 * **Check whether the GPS antenna is loose**.
1169
1170 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1171
1172 [[image:image-20240903094214-1.png||height="340" width="461"]]
1173
1174 * **Use the AT+GNSST command to extend the positioning time.**
1175
1176 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1177
1178 If the location fails, users can extend the location time.
1179
1180 [[image:image-20240903102641-8.png||height="303" width="600"]]
1181
1182
1183 == 7.6 CB device configuration TCP/IP failed ==
1184
1185 [[image:image-20250113103816-1.png]]
1186
1187 **Use AT+IPTYPE=? to check the IPTYPE configuration.
1188 AT+IPTYPE can only be configured as 1 or 2.
1189 If it is configured otherwise, this error will occur**
1190
1191
1192 == 7.7 How to get the debug log for further analyze? ==
1193
1194
1195 CB model use the same debug instruction as NB model. Please check this link:
1196
1197 **[[How to Get Full Log>>https://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H6.6Howtogetthedebuglogforfurtheranalyze3F]]**?
1198
1199
1200