Version 138.1 by Xiaoling on 2025/01/13 11:31

Show last authors
1 ​**Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8
9
10 = 1. The use of this guideline =
11
12
13 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
14
15
16 = 2. Attach Network =
17
18 == 2.1 General Configure to attach network ==
19
20
21 To attache end nodes to NB-IoT or LTE-M Network, You need to:
22
23 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
24 1. Power Off End Node ( See below for the power off/on position)
25 1. Insert the SIM card to Sensor. ( See below for direction)
26 1. Power On End Node
27 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
28
29 [[image:image-20240602220856-1.png]]
30
31
32 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230808205045-1.png?width=438&height=293&rev=1.1||alt="image-20230808205045-1.png"]]
33
34
35 After doing above, the end nodes should be able to attach to NB-IoT network .
36
37 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
38
39 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
40
41 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
42
43 Make sure you use a the NB-IoT or LTE-M SIM card.
44
45 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
46 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
47 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
48 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
49
50 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
51 )))|(% style="width:351px" %)(((
52 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
53 )))|(% style="width:120px" %)UK: Band20
54 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
55 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
56
57
58 == 2.2 Speed Up Network Attach time ==
59
60
61 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
62
63 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
64
65 Attache to 1NCE card for Australia use:
66
67 * AT+COPS=1,2,"50501",8                                                 
68 * AT+QCFG="band",0,0x8000000,0x8000000,1
69
70 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
71
72 AT+QENG="servingcell"
73 +QENG: "servingcell","NOCONN","eMTC","FD
74 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
75
76
77 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
78
79 === **1. Configure Frequency Band** ===
80
81 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
82
83 **<GSM_bandval>:**
84
85 0 No change 
86 0x1 EGSM900
87 0x2 DCS1800
88 0x4 GSM850 
89 0x8 PCS1900 
90 0xF All of the supported bands above
91
92 **<eMTC_bandval>:**
93
94 0 No change 
95 0x1  LTE B1
96 0x2  LTE B2 
97 0x4  LTE B3 
98 0x8  LTE B4 
99 0x10  LTE B5 
100 0x80  LTE B8 
101 0x800  LTE B12 
102 0x1000  LTE B13 
103 0x20000  LTE B18 
104 0x40000  LTE B19 
105 0x80000  LTE B20 
106 0x1000000  LTE B25 
107 0x2000000  LTE B26 
108 0x4000000  LTE B27 
109 0x8000000  LTE B28 
110 0x40000000  LTE B31 
111 0x20000000000000000  LTE B66 
112 0x800000000000000000  LTE B72 
113 0x1000000000000000000  LTE B73 
114 0x1000000000000000000000  LTE B85
115
116 **<NB-IoT_bandval>:**
117
118 0 No change 
119 0x1  LTE B1
120 0x2  LTE B2 
121 0x4  LTE B3 
122 0x8  LTE B4 
123 0x10  LTE B5 
124 0x80  LTE B8 
125 0x800  LTE B12 
126 0x1000  LTE B13 
127 0x20000  LTE B18 
128 0x40000  LTE B19 
129 0x80000  LTE B20 
130 0x1000000  LTE B25 
131 0x8000000  LTE B28 
132 0x40000000  LTE B31 
133 0x20000000000000000  LTE B66
134
135 0x400000000000000000  LTE B71
136 0x800000000000000000  LTE B72 
137 0x1000000000000000000  LTE B73 
138 0x1000000000000000000000  LTE B85
139
140 For example, setting the LTE-M network frequency band to 3.
141
142 AT+QCFG="band",0xF,0x4,0,1
143
144 When searching for all bands, the value of this command is set to:
145
146 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
147
148
149 === **2. Configure search network sequence** ===
150
151 AT+QCFG="nwscanseq",<scanseq>,1
152
153 <scanseq>:
154
155 00 Automatic (eMTC → NB-IoT → GSM) 
156 01 GSM 
157 02 eMTC 
158 03 NB-IoT
159
160 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
161
162
163 === **3. Configure Network Category to be Searched for under LTE RAT** ===
164
165 AT+QCFG="iotopmode",mode,1
166
167 0 eMTC 
168 1 NB-IoT 
169 2 eMTC and NB-IoT
170
171
172 === **4. AT command to set frequency band and network category** ===
173
174 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
175
176 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
177
178 **Example :**
179
180 Taking the use of 1nce cards in **the United States** as an example.
181
182 AT+APN=iot.1nce.net  ~/~/set APN
183
184 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
185
186 AT+IOTMOD=0  ~/~/ Set  eMTC Network
187
188 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
189
190
191 = 3. Configure to connect to different servers =
192
193 == 3.1 General UDP Connection ==
194
195
196 The NB-IoT Sensor can send packet to server use UDP protocol.
197
198
199 === 3.1.1 Simulate UDP Connection by PC tool ===
200
201
202 We can use PC tool to simulate UDP connection to make sure server works ok.
203
204 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
205
206
207 === 3.1.2 Configure NB-IoT Sensor ===
208
209 ==== 3.1.2.1 AT Commands ====
210
211
212 (% style="color:blue" %)**AT Commands:**
213
214 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
215
216 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
217
218 [[image:image-20240819102802-1.png]]
219
220
221 ==== 3.1.2.2 Uplink Example ====
222
223
224 [[image:image-20240819105418-8.png||height="611" width="1287"]]
225
226
227 == 3.2 General COAP Connection ==
228
229
230 The NB-IoT Sensor can send packet to server use COAP protocol.
231
232 Below are the commands.
233
234 (% style="color:blue" %)**AT Commands:**
235
236 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
237
238 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
239
240 * (% style="color:#037691" %)**AT+URI1=11,"i"**  (%%) ~/~/  Configure CoAP Message Options
241 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
242
243 [[image:image-20240819103212-2.png]]
244
245
246 === 3.2.1 Uplink Example ===
247
248
249 [[image:image-20240819103909-4.png||height="453" width="955"]]
250
251
252 == 3.2 General MQTT Connection ==
253
254
255 The NB-IoT Sensor can send packet to server use MQTT protocol.
256
257 Below are the commands.
258
259 (% style="color:blue" %)**AT Commands:**
260
261 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
262
263 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
264
265 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
266
267 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
268
269 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
270
271 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
272
273 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
274
275 [[image:image-20240819105003-7.png||height="613" width="458"]]
276
277
278 [[image:image-20240819104942-6.png||height="702" width="974"]]
279
280 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
281
282
283 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
284
285 === 3.3.1 Get MQTT Credentials ===
286
287
288 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
289
290 [[image:image-20240819173602-1.png||height="401" width="743"]]
291
292 [[image:image-20240819173706-3.png||height="595" width="597"]]
293
294
295 === 3.3.2 Simulate with MQTT.fx ===
296
297 ==== 3.3.2.1 Establish MQTT Connection ====
298
299
300 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
301
302 [[image:image-20240819173826-4.png||height="534" width="734"]]
303
304 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
305
306 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
307
308 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
309
310 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
311
312 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
313
314 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
315
316
317 [[image:image-20240819174033-5.png]]
318
319 [[image:image-20240819174209-6.png]]
320
321 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
322
323 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
324
325 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
326
327 Where 63 and 67 are the value to be published to field1 & field2.
328
329 (% style="color:blue" %)**Result: **
330
331 [[image:image-20240819174314-7.png||height="469" width="785"]]
332
333
334 === 3.3.3 Configure NB-IoT Sensor for connection ===
335
336 ==== 3.3.3.1 AT Commands: ====
337
338
339 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
340
341 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
342
343 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
344
345 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
346
347 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
348
349 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
350
351 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
352
353 ==== 3.3.3.2 Uplink Examples ====
354
355
356 [[image:image-20240819174540-8.png]]
357
358 For SE01-NB
359
360 For DDS20-NB
361
362 For DDS45-NB
363
364 For DDS75-NB
365
366 For NMDS120-NB
367
368 For SPH01-NB
369
370 For NLM01-NB
371
372 For NMDS200-NB
373
374 For CPN01-NB
375
376 For DS03A-NB
377
378 For SN50V3-NB
379
380
381 ==== 3.3.3.3 Map fields to sensor value ====
382
383
384 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
385
386 [[image:image-20240819174610-9.png]]
387
388 [[image:image-20240819174618-10.png]]
389
390 Below is the NB-IoT Product Table show the mapping.
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
393 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:150px" %)Field3|(% style="background-color:#4f81bd; color:white; width:141px" %)Field4|(% style="background-color:#4f81bd; color:white; width:138px" %)Field5|(% style="background-color:#4f81bd; color:white; width:135px" %)Field6|(% style="background-color:#4f81bd; color:white; width:134px" %)Field7|(% style="background-color:#4f81bd; color:white; width:138px" %)Field8|(% style="background-color:#4f81bd; color:white; width:85px" %)Field9|(% style="background-color:#4f81bd; color:white; width:80px" %)Field10
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:150px" %)conduct|(% style="width:141px" %)dielectric_constant|(% style="width:138px" %)Battery|(% style="width:135px" %)RSSI|(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
396 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
398 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
399 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:150px" %)RSSI|(% style="width:141px" %) |(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
400 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% colspan="1" rowspan="1" style="width:80px" %)
401 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
402 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:150px" %)Battery|(% style="width:141px" %)RSSI|(% style="width:138px" %) |(% style="width:135px" %) |(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
403 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:150px" %)door open duration|(% style="width:141px" %)calc flag|(% style="width:138px" %)Battery|(% style="width:135px" %)RSSI|(% style="width:134px" %) |(% style="width:138px" %) |(% style="width:85px" %) |(% style="width:80px" %)
404 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:150px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:141px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:138px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:135px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:134px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:138px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:85px" %)Battery|(% colspan="1" rowspan="1" style="width:80px" %)RSSI
405 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:150px" %)RSSI|(% colspan="1" rowspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:138px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:135px" %)adc0|(% colspan="1" rowspan="1" style="width:134px" %)Temperature |(% colspan="1" rowspan="1" style="width:138px" %)Humidity|(% colspan="1" rowspan="1" style="width:85px" %) |(% colspan="1" rowspan="1" style="width:80px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" style="width:138px" %)exit_state/input PA4|(% colspan="1" style="width:135px" %)adc0|(% colspan="1" style="width:134px" %)distance|(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
407 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:138px" %)exit_state/input PA4|(% colspan="1" style="width:135px" %)adc1|(% colspan="1" style="width:134px" %)Temperature|(% colspan="1" style="width:138px" %)Humidity|(% colspan="1" style="width:85px" %)adc4|(% colspan="1" style="width:80px" %)
408 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" style="width:138px" %)adc0|(% colspan="1" style="width:135px" %)exit_state/input PA4|(% colspan="1" style="width:134px" %)DS18B20 Temp2|(% colspan="1" style="width:138px" %)DS18B20 Temp3|(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
409 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)DS18B20 Temp|(% colspan="1" style="width:138px" %)adc0|(% colspan="1" style="width:135px" %)exit_state/input PA4|(% colspan="1" style="width:134px" %)Weight|(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
410 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:150px" %)RSSI|(% colspan="1" style="width:141px" %)count|(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:135px" %) |(% colspan="1" style="width:134px" %) |(% colspan="1" style="width:138px" %) |(% colspan="1" style="width:85px" %) |(% colspan="1" style="width:80px" %)
411
412 == 3.4 [[Datacake>>https://datacake.co/]] ==
413
414 (% class="wikigeneratedid" %)
415 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
416
417 (% class="wikigeneratedid" %)
418 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
419
420 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
421
422 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
423
424 === 3.4.1 For device Already has template ===
425
426 ==== 3.4.1.1 Create Device ====
427
428
429 (% style="color:blue" %)**Add Device**(%%) in DataCake.
430
431 [[image:image-20240820110003-1.png]]
432
433 [[image:image-20240820110017-2.png]]
434
435 (% style="color:blue" %)**Choose the correct model**(%%) from template.
436
437 [[image:image-20240820110031-3.png]]
438
439 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
440
441 [[image:image-20240820110048-4.png]]
442
443 [[image:image-20240820110103-5.png]]
444
445 [[image:image-20240820110114-6.png]]
446
447
448 === 3.4.2 For Device already registered in DataCake before shipped ===
449
450 ==== 3.4.2.1 Scan QR Code to get the device info ====
451
452
453 Users can use their phones or computers to scan QR codes to obtain device data information.
454
455 [[image:image-20240820110129-7.png]]
456
457 [[image:image-20240820110218-9.png]]
458
459
460 ==== 3.4.2.2 Claim Device to User Account ====
461
462
463 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
464
465
466 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
467
468
469 **Step1: Add a device**
470
471 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
472
473
474 **Step2: Choose your device type,please select dragino NB-IOT device**
475
476 [[image:image-20240820110247-11.png]]
477
478
479 **Step3: Choose to create a new device**
480
481 [[image:image-20240820111016-12.png]]
482
483
484 **Step4: Fill in the device ID of your NB device**
485
486 [[image:image-20240820111101-13.png]]
487
488
489 **Step5: Please select your device plan according to your needs and complete the creation of the device**
490
491 [[image:image-20240820111113-14.png]]
492
493
494 **Step6: Please add the decoder at the payload decoder of the device configuration.**
495
496 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
497
498 [[image:image-20240820111236-15.png]]
499
500 [[image:image-20240820111248-16.png]]
501
502
503 **Step7: Add the output of the decoder as a field**
504
505 [[image:image-20240820111259-17.png]]
506
507
508 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
509
510 [[image:image-20240820111312-18.png]]
511
512 [[image:image-20240820111322-19.png]]
513
514 [[image:image-20240820111333-20.png]]
515
516
517 === 3.4.4 For device have not configured to connect to DataCake ===
518
519
520 (% class="lead" %)
521 Use AT command for connecting to DataCake
522
523 (% style="color:blue" %)**AT+PRO=2,0**
524
525 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
526
527
528 == 3.5 Node-Red (via MQTT) ==
529
530 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
531
532
533 Take S31-NB UDP protocol as an example.
534
535 Dragino provides input flow examples for the sensors.
536
537 User can download the required JSON file through Dragino Node-RED input flow template.
538
539 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
540
541 We can directly import the template.
542
543 The templates for S31-NB and NB95S31B are the same.
544
545 [[image:image-20240820111353-21.png]]
546
547 Please select the NB95S31B template.
548
549 [[image:image-20240820111405-22.png]]
550
551 [[image:image-20240820111418-23.png]]
552
553 [[image:image-20240820111427-24.png]]
554
555 Successfully imported template.
556
557 [[image:image-20240820111438-25.png]]
558
559 Users can set UDP port.
560
561 [[image:image-20240820111448-26.png]]
562
563
564 === 3.5.2 Simulate Connection ===
565
566
567 We have completed the configuration of UDP. We can try sending packets to node red.
568
569 [[image:image-20240820111504-27.png]]
570
571 [[image:image-20240820111515-28.png]]
572
573
574 === 3.5.3 Configure NB-IoT Sensors ===
575
576
577 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
578 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
579 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
580 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
581 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
582 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
583
584 == 3.6 ThingsBoard.Cloud (via MQTT) ==
585
586 === 3.6.1 Configure ThingsBoard ===
587
588 ==== 3.6.1.1 Create Device ====
589
590
591 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
592
593 [[image:image-20240820112210-29.png]]
594
595
596 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
597
598
599 (% style="color:blue" %)**Uplink Converter**
600
601 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
602
603 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
604
605 [[image:image-20240820112222-30.png]]
606
607 (% style="color:blue" %)**Downlink Converter**
608
609 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
610
611 [[image:image-20240820112236-31.png]]
612
613 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
614
615
616 ==== 3.6.1.3 MQTT Integration Setup ====
617
618
619 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
620
621 [[image:image-20240820112247-32.png]]
622
623 * The next steps is to add the recently created uplink and downlink converters;
624
625 [[image:image-20240820112302-33.png]]
626
627 [[image:image-20240820112316-34.png]]
628
629 (% style="color:blue" %)**Add a topic filter:**
630
631 Consistent with the theme of the node setting.
632
633 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
634
635 [[image:image-20240820112330-35.png]]
636
637
638 === 3.6.2 Simulate with MQTT.fx ===
639
640 [[image:image-20240820112340-36.png]]
641
642 [[image:image-20240820112351-37.png]]
643
644
645 === 3.6.3 Configure NB-IoT Sensor ===
646
647
648 (% style="color:blue" %)**AT Commands**
649
650 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
651
652 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
653
654 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
655
656 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
657
658 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
659
660 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
661
662 Test Uplink by click the button for 1 second
663
664 [[image:image-20240820112404-38.png]]
665
666 [[image:image-20240820112416-39.png]]
667
668 [[image:image-20240820112426-40.png]]
669
670
671 == 3.7 ThingsBoard.Cloud (via COAP) ==
672
673 === 3.7.1 Configure ThingsBoard ===
674
675 ==== 3.7.1.1 Create Uplink & Downlink Converter ====
676
677
678 (% style="color:blue" %)**Uplink Converter**
679
680 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
681
682 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“COAP Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
683
684 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729141300-1.png?width=1115&height=552&rev=1.1||alt="image-20240729141300-1.png" height="579" width="1168"]]
685
686
687 (% style="color:blue" %)**Downlink Converter**
688
689 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external COAP broker.
690
691 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729142505-3.png?width=1023&height=507&rev=1.1||alt="image-20240729142505-3.png" height="579" width="1168"]]
692
693
694 ==== 3.7.1.2 COAP Integration Setup ====
695
696
697 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“CoAP Integration”**(%%), select type **COAP    **(% style="color:blue" %);
698
699 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729144058-4.png?width=1021&height=506&rev=1.1||alt="image-20240729144058-4.png" height="583" width="1176"]]
700
701
702 The next steps is to add the recently created uplink converters;
703
704 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729150142-5.png?width=1023&height=507&rev=1.1||alt="image-20240729150142-5.png" height="591" width="1193"]]
705
706
707 ==== 3.7.1.3 Add COAP Integration ====
708
709 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729161543-9.png?width=1009&height=500&rev=1.1||alt="image-20240729161543-9.png" height="590" width="1191"]]
710
711
712 === 3.7.2 Node Configuration(Example: Connecting to the Thingsboard platform) ===
713
714 ==== 3.7.2.1 Instruction Description ====
715
716
717 * AT+PRO=1,0(HEX format uplink)  &AT+PRO=1,5(JSON format uplink)
718 * AT+SERVADDR=COAP Server Address,5683
719
720 Example: AT+SERVADDR=int.thingsboard.cloud,5683(The address is automatically generated when the COAP integration is created)
721
722 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729172305-12.png?width=624&height=361&rev=1.1||alt="image-20240729172305-12.png" height="417" width="721"]]
723
724 Note:The port for the COAP protocol has been fixed to 5683
725
726
727 * AT+URL1=11,"i"
728 * AT+URL2=11,"Needs to be consistent with the CoAP endpoint URL in the platform"
729 *
730
731 -CB devices using a (% style="color:red" %)**BG95-M2**(%%) module, you need to configure (% style="color:red" %)**TWO**(%%) URL commands,
732
733 e.g.
734
735 * AT+URL1=11, "i"
736 * AT+URL2=11,"faaaa241f-af4a-b780-4468-c671bb574858"
737
738 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729172500-14.png?width=700&height=403&rev=1.1||alt="image-20240729172500-14.png" height="413" width="718"]]
739
740
741 == 3.8 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
742
743 === 3.8.1 Create device & Get Credentials ===
744
745
746 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
747
748 [[image:image-20240820112516-41.png]]
749
750 [[image:image-20240820112526-42.png]]
751
752 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
753
754 [[image:image-20240820112539-43.png]]
755
756 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
757
758 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
759
760 * (% style="color:#037691" %)**Profile Name: “Any name”**
761
762 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
763
764 * (% style="color:#037691" %)**Broker Port: 8883**
765
766 * (% style="color:#037691" %)**Client ID: “Any value”**
767
768 (% style="color:blue" %)**On the section User credentials, set the following information:**
769
770 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
771
772 * (% style="color:#037691" %)**Password: “Your device token”**
773
774 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
775
776 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
777
778 (% style="color:blue" %)**AT command:**
779
780 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
781
782 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
783
784 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
785
786 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
787
788 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
789
790 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
791
792 === 3.8.2 Simulate with MQTT.fx ===
793
794
795 [[image:image-20240820112552-44.png]]
796
797 [[image:image-20240820112604-45.png]]
798
799 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
800
801 [[image:image-20240820112615-46.png]]
802
803 [[image:image-20240820112626-47.png]]
804
805
806 === 3.8.3 tago data ===
807
808
809 [[image:image-20240820112637-48.png]]
810
811 [[image:image-20240820112647-49.png]]
812
813
814 == 3.9 TCP Connection ==
815
816
817 (% style="color:blue" %)**AT command:**
818
819 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
820
821 * (% style="color:#037691" %)**AT+PRO=4,5   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
822
823 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
824
825 (% style="color:blue" %)**Sensor Console Output when Uplink:**
826
827 [[image:image-20240820112704-50.png]]
828
829 (% style="color:blue" %)**See result in TCP Server:**
830
831 [[image:image-20240820112716-51.png]]
832
833
834 == 3.10 AWS Connection ==
835
836
837 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
838
839
840 = 4. COAP/UDP/MQTT/TCP downlink =
841
842 == 4.1 MQTT (via MQTT.fx) ==
843
844
845 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
846
847 **1.** Configure node MQTT connection (via MQTT.fx):
848
849 (% style="color:blue" %)**AT command:**
850
851 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
852
853 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
854
855 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
856
857 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
858
859 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
860
861 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
862
863 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
864
865 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
866
867
868 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
869
870 [[image:image-20240820112813-54.png]]
871
872
873 **3. **The downlink command can be successfully sent only when the downlink port is open.
874
875 The downlink port is opened for about 3 seconds after uplink packets are sent.
876
877 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
878
879 [[image:image-20240820112824-55.png]]
880
881 [[image:image-20240820112835-56.png]]
882
883 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
884
885
886 == 4.2 UDP (via Thingseye) ==
887
888
889 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
890
891 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
892
893 [[image:image-20240820141843-2.png||height="546" width="821"]]
894
895 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
896
897 [[image:image-20240820143316-3.png||height="555" width="1170"]]
898
899 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
900
901 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
902
903 [[image:image-20240820143820-4.png||height="554" width="1168"]]
904
905 After the command is successfully added, the platform will send the command down on the node's next uplink.
906
907 [[image:image-20240820144913-6.png||height="585" width="1232"]]
908
909 [[image:image-20240820145133-7.png||height="582" width="1227"]]
910
911 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
912
913 [[image:image-20240820145309-8.png]]
914
915
916 = 5. GPS positioning function =
917
918 == 1. Turn on GPS function ==
919
920
921 (% class="wikigeneratedid" %)
922 AT+GPS=1 or 0  ~/~/ GPS function on or off
923
924
925 == 2. Extend the time to turn on GNSS ==
926
927
928 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
929
930
931 == 3. Get or set GPS positioning interval in units of hour ==
932
933
934 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
935
936
937 = 6. FAQ =
938
939 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
940
941
942 The NB series has the feature for Multi Sampling and one uplink. See one of them
943
944 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
945
946 User can use this feature for below purpose:
947
948 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
949 1. Give more sampling data points.
950 1. Increase reliable in transmission. For example. If user set
951 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
952 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
953 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
954 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
955
956 == 6.2 Why the uplink JSON format is not standard? ==
957
958
959 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
960
961 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
962
963 [[image:image-20240820112848-57.png]]
964
965
966 = 7. Trouble Shooting: =
967
968 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
969
970
971 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
972
973 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
974
975 [[image:image-20240820112859-58.png]]
976
977 If fail to attach network, it will shows signal 99. as below:
978
979 [[image:image-20240820112908-59.png]]
980
981 (% class="lead" %)
982 When see this issue, below are the checklist:
983
984 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
985 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
986 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
987 * Check if the device is attached to Carrier network but reject. (need to check with operator).
988 * Check if the antenna is connected firmly.
989
990 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
991
992
993 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
994
995
996 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
997
998 [[image:image-20240820113015-60.png]]
999
1000
1001 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
1002
1003 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
1004 === UDP: ===
1005
1006 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
1007 Its downlink command is the same as the AT command, but brackets are required.
1008 Example:
1009
1010 {AT+TDC=300}
1011
1012
1013 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
1014 === MQTT: ===
1015
1016 Json:
1017
1018 The Json format in MQTT mode needs to be configured with all commands.
1019 If you have configurations that need to be changed, please change them in the template below.
1020 Template:
1021
1022 {
1023 "AT+SERVADDR":"119.91.62.30,1882",
1024 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
1025 "AT+UNAME":"usenamedragino",
1026 "AT+PWD":"passworddragino",
1027 "AT+PUBTOPIC":"123",
1028 "AT+SUBTOPIC":"321",
1029 "AT+TDC":"7200",
1030 "AT+INTMOD":"0",
1031 "AT+APN":"NULL",
1032 "AT+5VT":"0",
1033 "AT+PRO":"3,5",
1034 "AT+TR":"900",
1035 "AT+NOUD":"0",
1036 "AT+CSQTIME":"5",
1037 "AT+DNSTIMER":"0",
1038 "AT+TLSMOD":"0,0",
1039 "AT+MQOS":"0",
1040 "AT+TEMPALARM1":"0",
1041 "AT+TEMPALARM2":"10",
1042 "AT+TEMPALARM3":"0"
1043 }
1044
1045 Hex:
1046
1047 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
1048
1049 The supported commands are consistent with LoRaWAN's hex commands.
1050 Please refer to the following link to obtain the hex format:
1051
1052 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1053
1054
1055 == 7.4 What if the signal is good but the domain name resolution fails? ==
1056
1057
1058 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
1059
1060 [[image:image-20240827150705-6.png||height="489" width="687"]]
1061
1062 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
1063
1064 * Set the DNS
1065
1066 (% style="color:blue" %)**AT Command: AT+GDNS**
1067
1068 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
1069
1070 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
1071
1072 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1073
1074 Example:
1075
1076 [[image:image-20240827150121-5.png||height="473" width="676"]][[image:image-20240827145055-4.png||height="474" width="665"]]
1077
1078
1079 == 7.5 GPS debugging ==
1080
1081
1082 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1083
1084 [[image:image-20240903104250-9.png||height="275" width="614"]]
1085
1086
1087 [[image:image-20240903104431-10.png||height="291" width="621"]]
1088
1089
1090 === 7.5.1 GPS commands ===
1091
1092
1093 The following are three related AT commands that introduce GPS functions.
1094
1095 * **Turn on/off GPS**
1096
1097 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1098
1099 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1100
1101 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1102
1103 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1104
1105 Format: Command Code (0x11) followed by 1 byte.
1106
1107 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1108
1109 * **Set GNSS open time**
1110
1111 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1112
1113 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1114
1115 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1116
1117 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1118
1119 Format: Command Code (0x10) followed by 2 bytes.
1120
1121 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1122
1123 * **Set GPS positioning interval**
1124
1125 Feature: Set GPS positioning interval (unit: hour).
1126
1127 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1128
1129 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1130
1131 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1132
1133 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1134
1135 Format: Command Code (0x12) followed by 3 bytes.
1136
1137 Example: 24 hours:  24(D)=0x18(H)
1138
1139 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1140
1141
1142 === 7.5.2 GPS workflow ===
1143
1144
1145 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1146
1147 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1148
1149 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1150
1151 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1152
1153 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1154
1155 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1156
1157 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1158
1159
1160 === 7.5.3 GPS debugging methods ===
1161
1162
1163 In summary, we can deduce the methods of debugging GPS:
1164
1165 * **Check whether the GPS function is enabled.**
1166
1167 [[image:image-20240903102327-5.png||height="271" width="529"]]
1168
1169 * **Check whether the GPS antenna is loose**.
1170
1171 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1172
1173 [[image:image-20240903094214-1.png||height="340" width="461"]]
1174
1175 * **Use the AT+GNSST command to extend the positioning time.**
1176
1177 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1178
1179 If the location fails, users can extend the location time.
1180
1181 [[image:image-20240903102641-8.png||height="303" width="600"]]
1182
1183
1184 == 7.6 CB device configuration TCP/IP failed ==
1185
1186 [[image:image-20250113103816-1.png]]
1187
1188 **Use AT+IPTYPE=? to check the IPTYPE configuration.
1189 AT+IPTYPE can only be configured as 1 or 2.
1190 If it is configured otherwise, this error will occur**
1191
1192