Version 134.1 by Mengting Qiu on 2024/10/18 15:41

Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11
12 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
13
14
15 = 2. Attach Network =
16
17 == 2.1 General Configure to attach network ==
18
19
20 To attache end nodes to NB-IoT or LTE-M Network, You need to:
21
22 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
23 1. Power Off End Node ( See below for the power off/on position)
24 1. Insert the SIM card to Sensor. ( See below for direction)
25 1. Power On End Node
26 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
27
28 [[image:image-20240602220856-1.png]]
29
30
31 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230808205045-1.png?width=438&height=293&rev=1.1||alt="image-20230808205045-1.png"]]
32
33
34 After doing above, the end nodes should be able to attach to NB-IoT network .
35
36 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
37
38 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
39
40 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
41
42 Make sure you use a the NB-IoT or LTE-M SIM card.
43
44 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
45 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
46 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
47 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
48
49 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
50 )))|(% style="width:351px" %)(((
51 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
52 )))|(% style="width:120px" %)UK: Band20
53 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
54 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
55
56 == 2.2 Speed Up Network Attach time ==
57
58
59 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
60
61 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
62
63 Attache to 1NCE card for Australia use:
64
65 * AT+COPS=1,2,"50501",8
66 * AT+QCFG="band",0,0x8000000,0x8000000,1
67
68 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
69
70 AT+QENG="servingcell"
71 +QENG: "servingcell","NOCONN","eMTC","FD
72 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
73
74
75 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
76
77 === **1. Configure Frequency Band** ===
78
79 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
80
81 <GSM_bandval>:
82
83 0 No change 
84 0x1 EGSM900
85 0x2 DCS1800
86 0x4 GSM850 
87 0x8 PCS1900 
88 0xF All of the supported bands above
89
90 <eMTC_bandval>:
91
92 0 No change 
93 0x1  LTE B1
94 0x2  LTE B2 
95 0x4  LTE B3 
96 0x8  LTE B4 
97 0x10  LTE B5 
98 0x80  LTE B8 
99 0x800  LTE B12 
100 0x1000  LTE B13 
101 0x20000  LTE B18 
102 0x40000  LTE B19 
103 0x80000  LTE B20 
104 0x1000000  LTE B25 
105 0x2000000  LTE B26 
106 0x4000000  LTE B27 
107 0x8000000  LTE B28 
108 0x40000000  LTE B31 
109 0x20000000000000000  LTE B66 
110 0x800000000000000000  LTE B72 
111 0x1000000000000000000  LTE B73 
112 0x1000000000000000000000  LTE B85
113
114 <NB-IoT_bandval>:
115
116 0 No change 
117 0x1  LTE B1
118 0x2  LTE B2 
119 0x4  LTE B3 
120 0x8  LTE B4 
121 0x10  LTE B5 
122 0x80  LTE B8 
123 0x800  LTE B12 
124 0x1000  LTE B13 
125 0x20000  LTE B18 
126 0x40000  LTE B19 
127 0x80000  LTE B20 
128 0x1000000  LTE B25 
129 0x8000000  LTE B28 
130 0x40000000  LTE B31 
131 0x20000000000000000  LTE B66
132
133 0x400000000000000000  LTE B71
134 0x800000000000000000  LTE B72 
135 0x1000000000000000000  LTE B73 
136 0x1000000000000000000000  LTE B85
137
138 For example, setting the LTE-M network frequency band to 3.
139
140 AT+QCFG="band",0xF,0x4,0,1
141
142 When searching for all bands, the value of this command is set to:
143
144 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
145
146
147 === **2. Configure search network sequence** ===
148
149 AT+QCFG="nwscanseq",<scanseq>,1
150
151 <scanseq>:
152
153 00 Automatic (eMTC → NB-IoT → GSM) 
154 01 GSM 
155 02 eMTC 
156 03 NB-IoT
157
158 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
159
160
161 === **3. Configure Network Category to be Searched for under LTE RAT** ===
162
163 AT+QCFG="iotopmode",mode,1
164
165 0 eMTC 
166 1 NB-IoT 
167 2 eMTC and NB-IoT
168
169
170 === **4. AT command to set frequency band and network category** ===
171
172 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
173
174 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
175
176 **Example :**
177
178 Taking the use of 1nce cards in **the United States** as an example.
179
180 AT+APN=iot.1nce.net  ~/~/set APN
181
182 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
183
184 AT+IOTMOD=0  ~/~/ Set  eMTC Network
185
186 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
187
188
189 = 3. Configure to connect to different servers =
190
191 == 3.1 General UDP Connection ==
192
193
194 The NB-IoT Sensor can send packet to server use UDP protocol.
195
196
197 === 3.1.1 Simulate UDP Connection by PC tool ===
198
199
200 We can use PC tool to simulate UDP connection to make sure server works ok.
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
203
204
205 === 3.1.2 Configure NB-IoT Sensor ===
206
207 ==== 3.1.2.1 AT Commands ====
208
209
210 (% style="color:blue" %)**AT Commands:**
211
212 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
213
214 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
215
216 [[image:image-20240819102802-1.png]]
217
218
219 ==== 3.1.2.2 Uplink Example ====
220
221
222 [[image:image-20240819105418-8.png||height="611" width="1287"]]
223
224
225 == 3.2 General COAP Connection ==
226
227
228 The NB-IoT Sensor can send packet to server use COAP protocol.
229
230 Below are the commands.
231
232 (% style="color:blue" %)**AT Commands:**
233
234 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
235
236 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
237
238 * (% style="color:#037691" %)**AT+URI1=11,"i"**  (%%) ~/~/  Configure CoAP Message Options
239 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
240
241 [[image:image-20240819103212-2.png]]
242
243
244 === 3.2.1 Uplink Example ===
245
246
247 [[image:image-20240819103909-4.png||height="453" width="955"]]
248
249
250 == 3.2 General MQTT Connection ==
251
252
253 The NB-IoT Sensor can send packet to server use MQTT protocol.
254
255 Below are the commands.
256
257 (% style="color:blue" %)**AT Commands:**
258
259 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
260
261 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
262
263 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
264
265 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
266
267 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
268
269 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
270
271 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
272
273 [[image:image-20240819105003-7.png||height="613" width="458"]]
274
275
276 [[image:image-20240819104942-6.png||height="702" width="974"]]
277
278 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
279
280
281 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
282
283 === 3.3.1 Get MQTT Credentials ===
284
285
286 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
287
288 [[image:image-20240819173602-1.png||height="401" width="743"]]
289
290 [[image:image-20240819173706-3.png||height="595" width="597"]]
291
292
293 === 3.3.2 Simulate with MQTT.fx ===
294
295 ==== 3.3.2.1 Establish MQTT Connection ====
296
297
298 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
299
300 [[image:image-20240819173826-4.png||height="534" width="734"]]
301
302 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
303
304 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
305
306 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
307
308 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
309
310 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
311
312 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
313
314
315 [[image:image-20240819174033-5.png]]
316
317 [[image:image-20240819174209-6.png]]
318
319 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
320
321 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
322
323 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
324
325 Where 63 and 67 are the value to be published to field1 & field2.
326
327 (% style="color:blue" %)**Result: **
328
329 [[image:image-20240819174314-7.png||height="469" width="785"]]
330
331
332 === 3.3.3 Configure NB-IoT Sensor for connection ===
333
334 ==== 3.3.3.1 AT Commands: ====
335
336
337 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
338
339 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
340
341 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
342
343 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
344
345 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
346
347 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
348
349 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
350
351 ==== 3.3.3.2 Uplink Examples ====
352
353
354 [[image:image-20240819174540-8.png]]
355
356 For SE01-NB
357
358 For DDS20-NB
359
360 For DDS45-NB
361
362 For DDS75-NB
363
364 For NMDS120-NB
365
366 For SPH01-NB
367
368 For NLM01-NB
369
370 For NMDS200-NB
371
372 For CPN01-NB
373
374 For DS03A-NB
375
376 For SN50V3-NB
377
378
379 ==== 3.3.3.3 Map fields to sensor value ====
380
381
382 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
383
384 [[image:image-20240819174610-9.png]]
385
386 [[image:image-20240819174618-10.png]]
387
388 Below is the NB-IoT Product Table show the mapping.
389
390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
391 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:139px" %)Field4|(% style="background-color:#4f81bd; color:white; width:141px" %)Field5|(% style="background-color:#4f81bd; color:white; width:142px" %)Field6|(% style="background-color:#4f81bd; color:white; width:151px" %)Field7|(% style="background-color:#4f81bd; color:white; width:137px" %)Field8|(% style="background-color:#4f81bd; color:white; width:69px" %)Field9|(% style="background-color:#4f81bd; color:white; width:65px" %)Field10
392 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
393 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:139px" %)dielectric_constant|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
396 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
398 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
399 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
400 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
401 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:139px" %)calc flag|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
402 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:139px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:141px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:142px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:137px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:69px" %)Battery|(% colspan="1" rowspan="1" style="width:65px" %)RSSI
403 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:142px" %)adc0|(% colspan="1" rowspan="1" style="width:151px" %)Temperature |(% colspan="1" rowspan="1" style="width:137px" %)Humidity|(% colspan="1" rowspan="1" style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
404 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc0|(% colspan="1" style="width:151px" %)distance|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
405 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)adc0|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc1|(% colspan="1" style="width:151px" %)Temperature|(% colspan="1" style="width:137px" %)Humidity|(% colspan="1" style="width:69px" %)adc4|(% colspan="1" style="width:65px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)DS18B20 Temp2|(% colspan="1" style="width:137px" %)DS18B20 Temp3|(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
407 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)Weight|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
408 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)count|(% colspan="1" style="width:141px" %) |(% colspan="1" style="width:142px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
409
410 == 3.4 [[Datacake>>https://datacake.co/]] ==
411
412 (% class="wikigeneratedid" %)
413 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
414
415 (% class="wikigeneratedid" %)
416 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
417
418 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
419
420 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
421
422 === 3.4.1 For device Already has template ===
423
424 ==== 3.4.1.1 Create Device ====
425
426
427 (% style="color:blue" %)**Add Device**(%%) in DataCake.
428
429 [[image:image-20240820110003-1.png]]
430
431 [[image:image-20240820110017-2.png]]
432
433 (% style="color:blue" %)**Choose the correct model**(%%) from template.
434
435 [[image:image-20240820110031-3.png]]
436
437 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
438
439 [[image:image-20240820110048-4.png]]
440
441 [[image:image-20240820110103-5.png]]
442
443 [[image:image-20240820110114-6.png]]
444
445
446 === 3.4.2 For Device already registered in DataCake before shipped ===
447
448 ==== 3.4.2.1 Scan QR Code to get the device info ====
449
450
451 Users can use their phones or computers to scan QR codes to obtain device data information.
452
453 [[image:image-20240820110129-7.png]]
454
455 [[image:image-20240820110218-9.png]]
456
457
458 ==== 3.4.2.2 Claim Device to User Account ====
459
460 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
461
462
463 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
464
465
466 **Step1: Add a device**
467
468 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
469
470
471 **Step2: Choose your device type,please select dragino NB-IOT device**
472
473 [[image:image-20240820110247-11.png]]
474
475
476 **Step3: Choose to create a new device**
477
478 [[image:image-20240820111016-12.png]]
479
480
481 **Step4: Fill in the device ID of your NB device**
482
483 [[image:image-20240820111101-13.png]]
484
485
486 **Step5: Please select your device plan according to your needs and complete the creation of the device**
487
488 [[image:image-20240820111113-14.png]]
489
490
491 **Step6: Please add the decoder at the payload decoder of the device configuration.**
492
493 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
494
495 [[image:image-20240820111236-15.png]]
496
497 [[image:image-20240820111248-16.png]]
498
499
500 **Step7: Add the output of the decoder as a field**
501
502 [[image:image-20240820111259-17.png]]
503
504
505 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
506
507 [[image:image-20240820111312-18.png]]
508
509 [[image:image-20240820111322-19.png]]
510
511 [[image:image-20240820111333-20.png]]
512
513
514 === 3.4.4 For device have not configured to connect to DataCake ===
515
516
517 (% class="lead" %)
518 Use AT command for connecting to DataCake
519
520 (% style="color:blue" %)**AT+PRO=2,0**
521
522 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
523
524
525 == 3.5 Node-Red (via MQTT) ==
526
527 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
528
529
530 Take S31-NB UDP protocol as an example.
531
532 Dragino provides input flow examples for the sensors.
533
534 User can download the required JSON file through Dragino Node-RED input flow template.
535
536 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
537
538 We can directly import the template.
539
540 The templates for S31-NB and NB95S31B are the same.
541
542 [[image:image-20240820111353-21.png]]
543
544 Please select the NB95S31B template.
545
546 [[image:image-20240820111405-22.png]]
547
548 [[image:image-20240820111418-23.png]]
549
550 [[image:image-20240820111427-24.png]]
551
552 Successfully imported template.
553
554 [[image:image-20240820111438-25.png]]
555
556 Users can set UDP port.
557
558 [[image:image-20240820111448-26.png]]
559
560
561 === 3.5.2 Simulate Connection ===
562
563
564 We have completed the configuration of UDP. We can try sending packets to node red.
565
566 [[image:image-20240820111504-27.png]]
567
568 [[image:image-20240820111515-28.png]]
569
570
571 === 3.5.3 Configure NB-IoT Sensors ===
572
573
574 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
575 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
576 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
577 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
578 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
579 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
580
581 == 3.6 ThingsBoard.Cloud (via MQTT) ==
582
583 === 3.6.1 Configure ThingsBoard ===
584
585 ==== 3.6.1.1 Create Device ====
586
587
588 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
589
590 [[image:image-20240820112210-29.png]]
591
592
593 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
594
595
596 (% style="color:blue" %)**Uplink Converter**
597
598 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
599
600 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
601
602 [[image:image-20240820112222-30.png]]
603
604 (% style="color:blue" %)**Downlink Converter**
605
606 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
607
608 [[image:image-20240820112236-31.png]]
609
610 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
611
612
613 ==== 3.6.1.3 MQTT Integration Setup ====
614
615
616 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
617
618 [[image:image-20240820112247-32.png]]
619
620 * The next steps is to add the recently created uplink and downlink converters;
621
622 [[image:image-20240820112302-33.png]]
623
624 [[image:image-20240820112316-34.png]]
625
626 (% style="color:blue" %)**Add a topic filter:**
627
628 Consistent with the theme of the node setting.
629
630 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
631
632 [[image:image-20240820112330-35.png]]
633
634
635 === 3.6.2 Simulate with MQTT.fx ===
636
637 [[image:image-20240820112340-36.png]]
638
639 [[image:image-20240820112351-37.png]]
640
641
642 === 3.6.3 Configure NB-IoT Sensor ===
643
644
645 (% style="color:blue" %)**AT Commands**
646
647 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
648
649 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
650
651 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
652
653 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
654
655 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
656
657 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
658
659 Test Uplink by click the button for 1 second
660
661 [[image:image-20240820112404-38.png]]
662
663 [[image:image-20240820112416-39.png]]
664
665 [[image:image-20240820112426-40.png]]
666
667
668
669 == 3.7 ThingsBoard.Cloud (via COAP) ==
670
671 === 3.7.1 Configure ThingsBoard ===
672
673 ==== 3.7.1.1 Create Uplink & Downlink Converter ====
674
675
676 (% style="color:blue" %)**Uplink Converter**
677
678 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
679
680 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“COAP Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
681
682 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729141300-1.png?width=1115&height=552&rev=1.1||alt="image-20240729141300-1.png" height="579" width="1168"]]
683
684
685 (% style="color:blue" %)**Downlink Converter**
686
687 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external COAP broker.
688
689 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729142505-3.png?width=1023&height=507&rev=1.1||alt="image-20240729142505-3.png" height="579" width="1168"]]
690
691
692 ==== 3.7.1.2 COAP Integration Setup ====
693
694
695 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“CoAP Integration”**(%%), select type **COAP    **(% style="color:blue" %);
696
697 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729144058-4.png?width=1021&height=506&rev=1.1||alt="image-20240729144058-4.png" height="583" width="1176"]]
698
699
700 The next steps is to add the recently created uplink converters;
701
702 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729150142-5.png?width=1023&height=507&rev=1.1||alt="image-20240729150142-5.png" height="591" width="1193"]]
703
704
705 ==== 3.7.1.3 Add COAP Integration ====
706
707 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729161543-9.png?width=1009&height=500&rev=1.1||alt="image-20240729161543-9.png" height="590" width="1191"]]
708
709
710 === 3.7.2 Node Configuration(Example: Connecting to the Thingsboard platform) ===
711
712 ==== 3.7.2.1 Instruction Description ====
713
714
715 * AT+PRO=1,0(HEX format uplink)  &AT+PRO=1,5(JSON format uplink)
716 * AT+SERVADDR=COAP Server Address,5683
717
718 Example: AT+SERVADDR=int.thingsboard.cloud,5683(The address is automatically generated when the COAP integration is created)
719
720 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729172305-12.png?width=624&height=361&rev=1.1||alt="image-20240729172305-12.png" height="417" width="721"]]
721
722 Note:The port for the COAP protocol has been fixed to 5683
723
724
725 * AT+URL1=11,"i"
726 * AT+URL2=11,"Needs to be consistent with the CoAP endpoint URL in the platform"
727 *
728
729 -CB devices using a (% style="color:red" %)**BG95-M2**(%%) module, you need to configure (% style="color:red" %)**TWO**(%%) URL commands,
730
731 e.g.
732
733 * AT+URL1=11, "i"
734 * AT+URL2=11,"faaaa241f-af4a-b780-4468-c671bb574858"
735
736 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20240729172500-14.png?width=700&height=403&rev=1.1||alt="image-20240729172500-14.png" height="413" width="718"]]
737
738
739 == 3.8 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
740
741 === 3.8.1 Create device & Get Credentials ===
742
743
744 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
745
746 [[image:image-20240820112516-41.png]]
747
748 [[image:image-20240820112526-42.png]]
749
750 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
751
752 [[image:image-20240820112539-43.png]]
753
754 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
755
756 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
757
758 * (% style="color:#037691" %)**Profile Name: “Any name”**
759
760 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
761
762 * (% style="color:#037691" %)**Broker Port: 8883**
763
764 * (% style="color:#037691" %)**Client ID: “Any value”**
765
766 (% style="color:blue" %)**On the section User credentials, set the following information:**
767
768 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
769
770 * (% style="color:#037691" %)**Password: “Your device token”**
771
772 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
773
774 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
775
776 (% style="color:blue" %)**AT command:**
777
778 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
779
780 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
781
782 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
783
784 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
785
786 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
787
788 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
789
790 === 3.8.2 Simulate with MQTT.fx ===
791
792
793 [[image:image-20240820112552-44.png]]
794
795 [[image:image-20240820112604-45.png]]
796
797 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
798
799 [[image:image-20240820112615-46.png]]
800
801 [[image:image-20240820112626-47.png]]
802
803
804 === 3.8.3 tago data ===
805
806
807 [[image:image-20240820112637-48.png]]
808
809 [[image:image-20240820112647-49.png]]
810
811
812 == 3.9 TCP Connection ==
813
814
815 (% style="color:blue" %)**AT command:**
816
817 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
818
819 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
820
821 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
822
823 (% style="color:blue" %)**Sensor Console Output when Uplink:**
824
825 [[image:image-20240820112704-50.png]]
826
827 (% style="color:blue" %)**See result in TCP Server:**
828
829 [[image:image-20240820112716-51.png]]
830
831
832 == 3.10 AWS Connection ==
833
834
835 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
836
837
838 = 4. COAP/UDP/MQTT/TCP downlink =
839
840 == 4.1 MQTT (via MQTT.fx) ==
841
842
843 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
844
845 **1.** Configure node MQTT connection (via MQTT.fx):
846
847 (% style="color:blue" %)**AT command:**
848
849 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
850
851 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
852
853 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
854
855 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
856
857 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
858
859 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
860
861 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
862
863 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
864
865
866 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
867
868 [[image:image-20240820112813-54.png]]
869
870
871 **3. **The downlink command can be successfully sent only when the downlink port is open.
872
873 The downlink port is opened for about 3 seconds after uplink packets are sent.
874
875 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
876
877 [[image:image-20240820112824-55.png]]
878
879 [[image:image-20240820112835-56.png]]
880
881 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
882
883
884 == 4.2 UDP (via Thingseye) ==
885
886
887 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
888
889 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
890
891 [[image:image-20240820141843-2.png||height="546" width="821"]]
892
893 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
894
895 [[image:image-20240820143316-3.png||height="555" width="1170"]]
896
897 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
898
899 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
900
901 [[image:image-20240820143820-4.png||height="554" width="1168"]]
902
903 After the command is successfully added, the platform will send the command down on the node's next uplink.
904
905 [[image:image-20240820144913-6.png||height="585" width="1232"]]
906
907 [[image:image-20240820145133-7.png||height="582" width="1227"]]
908
909 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
910
911 [[image:image-20240820145309-8.png]]
912
913
914 = 5. GPS positioning function =
915
916 == 1. Turn on GPS function ==
917
918
919 (% class="wikigeneratedid" %)
920 AT+GPS=1 or 0  ~/~/ GPS function on or off
921
922
923 == 2. Extend the time to turn on GNSS ==
924
925
926 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
927
928
929 == 3. Get or set GPS positioning interval in units of hour ==
930
931
932 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
933
934
935 = 6. FAQ =
936
937 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
938
939
940 The NB series has the feature for Multi Sampling and one uplink. See one of them
941
942 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
943
944 User can use this feature for below purpose:
945
946 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
947 1. Give more sampling data points.
948 1. Increase reliable in transmission. For example. If user set
949 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
950 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
951 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
952 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
953
954 == 6.2 Why the uplink JSON format is not standard? ==
955
956
957 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
958
959 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
960
961 [[image:image-20240820112848-57.png]]
962
963
964 = 7. Trouble Shooting: =
965
966 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
967
968
969 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
970
971 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
972
973 [[image:image-20240820112859-58.png]]
974
975 If fail to attach network, it will shows signal 99. as below:
976
977 [[image:image-20240820112908-59.png]]
978
979 (% class="lead" %)
980 When see this issue, below are the checklist:
981
982 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
983 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
984 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
985 * Check if the device is attached to Carrier network but reject. (need to check with operator).
986 * Check if the antenna is connected firmly.
987
988 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
989
990
991 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
992
993
994 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
995
996 [[image:image-20240820113015-60.png]]
997
998
999 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
1000
1001 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
1002 === UDP: ===
1003
1004 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
1005 Its downlink command is the same as the AT command, but brackets are required.
1006 Example:
1007
1008 {AT+TDC=300}
1009
1010
1011 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
1012 === MQTT: ===
1013
1014 Json:
1015
1016 The Json format in MQTT mode needs to be configured with all commands.
1017 If you have configurations that need to be changed, please change them in the template below.
1018 Template:
1019
1020 {
1021 "AT+SERVADDR":"119.91.62.30,1882",
1022 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
1023 "AT+UNAME":"usenamedragino",
1024 "AT+PWD":"passworddragino",
1025 "AT+PUBTOPIC":"123",
1026 "AT+SUBTOPIC":"321",
1027 "AT+TDC":"7200",
1028 "AT+INTMOD":"0",
1029 "AT+APN":"NULL",
1030 "AT+5VT":"0",
1031 "AT+PRO":"3,5",
1032 "AT+TR":"900",
1033 "AT+NOUD":"0",
1034 "AT+CSQTIME":"5",
1035 "AT+DNSTIMER":"0",
1036 "AT+TLSMOD":"0,0",
1037 "AT+MQOS":"0",
1038 "AT+TEMPALARM1":"0",
1039 "AT+TEMPALARM2":"10",
1040 "AT+TEMPALARM3":"0"
1041 }
1042
1043 Hex:
1044
1045 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
1046
1047 The supported commands are consistent with LoRaWAN's hex commands.
1048 Please refer to the following link to obtain the hex format:
1049
1050 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1051
1052
1053 == 7.4 What if the signal is good but the domain name resolution fails? ==
1054
1055
1056 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
1057
1058 [[image:image-20240827150705-6.png||height="489" width="687"]]
1059
1060 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
1061
1062 * Set the DNS
1063
1064 (% style="color:blue" %)**AT Command: AT+GDNS**
1065
1066 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
1067
1068 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
1069
1070 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1071
1072 Example:
1073
1074 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
1075
1076
1077 == 7.5 GPS debugging ==
1078
1079
1080 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1081
1082 [[image:image-20240903104250-9.png||height="275" width="614"]]
1083
1084
1085 [[image:image-20240903104431-10.png||height="291" width="621"]]
1086
1087
1088 === 7.5.1 GPS commands ===
1089
1090
1091 The following are three related AT commands that introduce GPS functions.
1092
1093 * **Turn on/off GPS**
1094
1095 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1096
1097 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1098
1099 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1100
1101 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1102
1103 Format: Command Code (0x11) followed by 1 byte.
1104
1105 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1106
1107 * **Set GNSS open time**
1108
1109 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1110
1111 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1112
1113 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1114
1115 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1116
1117 Format: Command Code (0x10) followed by 2 bytes.
1118
1119 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1120
1121 * **Set GPS positioning interval**
1122
1123 Feature: Set GPS positioning interval (unit: hour).
1124
1125 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1126
1127 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1128
1129 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1130
1131 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1132
1133 Format: Command Code (0x12) followed by 3 bytes.
1134
1135 Example: 24 hours:  24(D)=0x18(H)
1136
1137 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1138
1139
1140 === 7.5.2 GPS workflow ===
1141
1142
1143 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1144
1145 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1146
1147 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1148
1149 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1150
1151 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1152
1153 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1154
1155 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1156
1157
1158 === 7.5.3 GPS debugging methods ===
1159
1160
1161 In summary, we can deduce the methods of debugging GPS:
1162
1163 * **Check whether the GPS function is enabled.**
1164
1165 [[image:image-20240903102327-5.png||height="271" width="529"]]
1166
1167 * **Check whether the GPS antenna is loose**.
1168
1169 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1170
1171 [[image:image-20240903094214-1.png||height="340" width="461"]]
1172
1173 * **Use the AT+GNSST command to extend the positioning time.**
1174
1175 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1176
1177 If the location fails, users can extend the location time.
1178
1179 [[image:image-20240903102641-8.png||height="303" width="600"]]
1180
1181
1182
1183
1184