Version 131.1 by kai on 2024/10/18 10:00

Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11
12 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
13
14
15 = 2. Attach Network =
16
17 == 2.1 General Configure to attach network ==
18
19
20 To attache end nodes to NB-IoT or LTE-M Network, You need to:
21
22 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
23 1. Power Off End Node ( See below for the power off/on position)
24 1. Insert the SIM card to Sensor. ( See below for direction)
25 1. Power On End Node
26 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
27
28 [[image:image-20240602220856-1.png]]
29
30
31 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230808205045-1.png?width=438&height=293&rev=1.1||alt="image-20230808205045-1.png"]]
32
33
34 After doing above, the end nodes should be able to attach to NB-IoT network .
35
36 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
37
38 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
39
40 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
41
42 Make sure you use a the NB-IoT or LTE-M SIM card.
43
44 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
45 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
46 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
47 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
48
49 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
50 )))|(% style="width:351px" %)(((
51 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
52 )))|(% style="width:120px" %)UK: Band20
53 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
54 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
55
56 == 2.2 Speed Up Network Attach time ==
57
58
59 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
60
61 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
62
63 Attache to 1NCE card for Australia use:
64
65 * AT+COPS=1,2,"50501",8
66 * AT+QCFG="band",0,0x8000000,0x8000000,1
67
68 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
69
70 AT+QENG="servingcell"
71 +QENG: "servingcell","NOCONN","eMTC","FD
72 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
73
74
75 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
76
77 === **1. Configure Frequency Band** ===
78
79 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
80
81 <GSM_bandval>:
82
83 0 No change 
84 0x1 EGSM900
85 0x2 DCS1800
86 0x4 GSM850 
87 0x8 PCS1900 
88 0xF All of the supported bands above
89
90 <eMTC_bandval>:
91
92 0 No change 
93 0x1  LTE B1
94 0x2  LTE B2 
95 0x4  LTE B3 
96 0x8  LTE B4 
97 0x10  LTE B5 
98 0x80  LTE B8 
99 0x800  LTE B12 
100 0x1000  LTE B13 
101 0x20000  LTE B18 
102 0x40000  LTE B19 
103 0x80000  LTE B20 
104 0x1000000  LTE B25 
105 0x2000000  LTE B26 
106 0x4000000  LTE B27 
107 0x8000000  LTE B28 
108 0x40000000  LTE B31 
109 0x20000000000000000  LTE B66 
110 0x800000000000000000  LTE B72 
111 0x1000000000000000000  LTE B73 
112 0x1000000000000000000000  LTE B85
113
114 <NB-IoT_bandval>:
115
116 0 No change 
117 0x1  LTE B1
118 0x2  LTE B2 
119 0x4  LTE B3 
120 0x8  LTE B4 
121 0x10  LTE B5 
122 0x80  LTE B8 
123 0x800  LTE B12 
124 0x1000  LTE B13 
125 0x20000  LTE B18 
126 0x40000  LTE B19 
127 0x80000  LTE B20 
128 0x1000000  LTE B25 
129 0x8000000  LTE B28 
130 0x40000000  LTE B31 
131 0x20000000000000000  LTE B66
132
133 0x400000000000000000  LTE B71
134 0x800000000000000000  LTE B72 
135 0x1000000000000000000  LTE B73 
136 0x1000000000000000000000  LTE B85
137
138 For example, setting the LTE-M network frequency band to 3.
139
140 AT+QCFG="band",0xF,0x4,0,1
141
142 When searching for all bands, the value of this command is set to:
143
144 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
145
146
147 === **2. Configure search network sequence** ===
148
149 AT+QCFG="nwscanseq",<scanseq>,1
150
151 <scanseq>:
152
153 00 Automatic (eMTC → NB-IoT → GSM) 
154 01 GSM 
155 02 eMTC 
156 03 NB-IoT
157
158 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
159
160
161 === **3. Configure Network Category to be Searched for under LTE RAT** ===
162
163 AT+QCFG="iotopmode",mode,1
164
165 0 eMTC 
166 1 NB-IoT 
167 2 eMTC and NB-IoT
168
169
170 === **4. AT command to set frequency band and network category** ===
171
172 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
173
174 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
175
176 **Example :**
177
178 Taking the use of 1nce cards in **the United States** as an example.
179
180 AT+APN=iot.1nce.net  ~/~/set APN
181
182 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
183
184 AT+IOTMOD=0  ~/~/ Set  eMTC Network
185
186 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
187
188
189 = 3. Configure to connect to different servers =
190
191 == 3.1 General UDP Connection ==
192
193
194 The NB-IoT Sensor can send packet to server use UDP protocol.
195
196
197 === 3.1.1 Simulate UDP Connection by PC tool ===
198
199
200 We can use PC tool to simulate UDP connection to make sure server works ok.
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
203
204
205 === 3.1.2 Configure NB-IoT Sensor ===
206
207 ==== 3.1.2.1 AT Commands ====
208
209
210 (% style="color:blue" %)**AT Commands:**
211
212 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
213
214 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
215
216 [[image:image-20240819102802-1.png]]
217
218
219 ==== 3.1.2.2 Uplink Example ====
220
221
222 [[image:image-20240819105418-8.png||height="611" width="1287"]]
223
224
225 == 3.2 General COAP Connection ==
226
227
228 The NB-IoT Sensor can send packet to server use COAP protocol.
229
230 Below are the commands.
231
232 (% style="color:blue" %)**AT Commands:**
233
234 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
235
236 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
237
238 * (% style="color:#037691" %)**AT+URI1=11,"i"**  (%%) ~/~/  Configure CoAP Message Options
239 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
240
241 [[image:image-20240819103212-2.png]]
242
243
244 === 3.2.1 Uplink Example ===
245
246
247 [[image:image-20240819103909-4.png||height="453" width="955"]]
248
249
250 == 3.2 General MQTT Connection ==
251
252
253 The NB-IoT Sensor can send packet to server use MQTT protocol.
254
255 Below are the commands.
256
257 (% style="color:blue" %)**AT Commands:**
258
259 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
260
261 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
262
263 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
264
265 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
266
267 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
268
269 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
270
271 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
272
273 [[image:image-20240819105003-7.png||height="613" width="458"]]
274
275
276 [[image:image-20240819104942-6.png||height="702" width="974"]]
277
278 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
279
280
281 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
282
283 === 3.3.1 Get MQTT Credentials ===
284
285
286 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
287
288 [[image:image-20240819173602-1.png||height="401" width="743"]]
289
290 [[image:image-20240819173706-3.png||height="595" width="597"]]
291
292
293 === 3.3.2 Simulate with MQTT.fx ===
294
295 ==== 3.3.2.1 Establish MQTT Connection ====
296
297
298 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
299
300 [[image:image-20240819173826-4.png||height="534" width="734"]]
301
302 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
303
304 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
305
306 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
307
308 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
309
310 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
311
312 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
313
314
315 [[image:image-20240819174033-5.png]]
316
317 [[image:image-20240819174209-6.png]]
318
319 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
320
321 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
322
323 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
324
325 Where 63 and 67 are the value to be published to field1 & field2.
326
327 (% style="color:blue" %)**Result: **
328
329 [[image:image-20240819174314-7.png||height="469" width="785"]]
330
331
332 === 3.3.3 Configure NB-IoT Sensor for connection ===
333
334 ==== 3.3.3.1 AT Commands: ====
335
336
337 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
338
339 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
340
341 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
342
343 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
344
345 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
346
347 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
348
349 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
350
351 ==== 3.3.3.2 Uplink Examples ====
352
353
354 [[image:image-20240819174540-8.png]]
355
356 For SE01-NB
357
358 For DDS20-NB
359
360 For DDS45-NB
361
362 For DDS75-NB
363
364 For NMDS120-NB
365
366 For SPH01-NB
367
368 For NLM01-NB
369
370 For NMDS200-NB
371
372 For CPN01-NB
373
374 For DS03A-NB
375
376 For SN50V3-NB
377
378
379 ==== 3.3.3.3 Map fields to sensor value ====
380
381
382 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
383
384 [[image:image-20240819174610-9.png]]
385
386 [[image:image-20240819174618-10.png]]
387
388 Below is the NB-IoT Product Table show the mapping.
389
390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
391 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:139px" %)Field4|(% style="background-color:#4f81bd; color:white; width:141px" %)Field5|(% style="background-color:#4f81bd; color:white; width:142px" %)Field6|(% style="background-color:#4f81bd; color:white; width:151px" %)Field7|(% style="background-color:#4f81bd; color:white; width:137px" %)Field8|(% style="background-color:#4f81bd; color:white; width:69px" %)Field9|(% style="background-color:#4f81bd; color:white; width:65px" %)Field10
392 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
393 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:139px" %)dielectric_constant|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
396 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
398 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
399 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
400 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
401 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:139px" %)calc flag|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
402 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:139px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:141px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:142px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:137px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:69px" %)Battery|(% colspan="1" rowspan="1" style="width:65px" %)RSSI
403 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:142px" %)adc0|(% colspan="1" rowspan="1" style="width:151px" %)Temperature |(% colspan="1" rowspan="1" style="width:137px" %)Humidity|(% colspan="1" rowspan="1" style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
404 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc0|(% colspan="1" style="width:151px" %)distance|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
405 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)adc0|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc1|(% colspan="1" style="width:151px" %)Temperature|(% colspan="1" style="width:137px" %)Humidity|(% colspan="1" style="width:69px" %)adc4|(% colspan="1" style="width:65px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)DS18B20 Temp2|(% colspan="1" style="width:137px" %)DS18B20 Temp3|(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
407 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)Weight|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
408 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)count|(% colspan="1" style="width:141px" %) |(% colspan="1" style="width:142px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
409
410 == 3.4 [[Datacake>>https://datacake.co/]] ==
411
412 (% class="wikigeneratedid" %)
413 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
414
415 (% class="wikigeneratedid" %)
416 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
417
418 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
419
420 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
421
422 === 3.4.1 For device Already has template ===
423
424 ==== 3.4.1.1 Create Device ====
425
426
427 (% style="color:blue" %)**Add Device**(%%) in DataCake.
428
429 [[image:image-20240820110003-1.png]]
430
431 [[image:image-20240820110017-2.png]]
432
433 (% style="color:blue" %)**Choose the correct model**(%%) from template.
434
435 [[image:image-20240820110031-3.png]]
436
437 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
438
439 [[image:image-20240820110048-4.png]]
440
441 [[image:image-20240820110103-5.png]]
442
443 [[image:image-20240820110114-6.png]]
444
445
446 === 3.4.2 For Device already registered in DataCake before shipped ===
447
448 ==== 3.4.2.1 Scan QR Code to get the device info ====
449
450
451 Users can use their phones or computers to scan QR codes to obtain device data information.
452
453 [[image:image-20240820110129-7.png]]
454
455 [[image:image-20240820110218-9.png]]
456
457
458 ==== 3.4.2.2 Claim Device to User Account ====
459
460 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
461
462
463 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
464
465
466 **Step1: Add a device**
467
468 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
469
470
471 **Step2: Choose your device type,please select dragino NB-IOT device**
472
473 [[image:image-20240820110247-11.png]]
474
475
476 **Step3: Choose to create a new device**
477
478 [[image:image-20240820111016-12.png]]
479
480
481 **Step4: Fill in the device ID of your NB device**
482
483 [[image:image-20240820111101-13.png]]
484
485
486 **Step5: Please select your device plan according to your needs and complete the creation of the device**
487
488 [[image:image-20240820111113-14.png]]
489
490
491 **Step6: Please add the decoder at the payload decoder of the device configuration.**
492
493 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
494
495 [[image:image-20240820111236-15.png]]
496
497 [[image:image-20240820111248-16.png]]
498
499
500 **Step7: Add the output of the decoder as a field**
501
502 [[image:image-20240820111259-17.png]]
503
504
505 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
506
507 [[image:image-20240820111312-18.png]]
508
509 [[image:image-20240820111322-19.png]]
510
511 [[image:image-20240820111333-20.png]]
512
513
514 === 3.4.4 For device have not configured to connect to DataCake ===
515
516
517 (% class="lead" %)
518 Use AT command for connecting to DataCake
519
520 (% style="color:blue" %)**AT+PRO=2,0**
521
522 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
523
524
525 == 3.5 Node-Red (via MQTT) ==
526
527 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
528
529
530 Take S31-NB UDP protocol as an example.
531
532 Dragino provides input flow examples for the sensors.
533
534 User can download the required JSON file through Dragino Node-RED input flow template.
535
536 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
537
538 We can directly import the template.
539
540 The templates for S31-NB and NB95S31B are the same.
541
542 [[image:image-20240820111353-21.png]]
543
544 Please select the NB95S31B template.
545
546 [[image:image-20240820111405-22.png]]
547
548 [[image:image-20240820111418-23.png]]
549
550 [[image:image-20240820111427-24.png]]
551
552 Successfully imported template.
553
554 [[image:image-20240820111438-25.png]]
555
556 Users can set UDP port.
557
558 [[image:image-20240820111448-26.png]]
559
560
561 === 3.5.2 Simulate Connection ===
562
563
564 We have completed the configuration of UDP. We can try sending packets to node red.
565
566 [[image:image-20240820111504-27.png]]
567
568 [[image:image-20240820111515-28.png]]
569
570
571 === 3.5.3 Configure NB-IoT Sensors ===
572
573
574 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
575 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
576 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
577 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
578 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
579 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
580
581 == 3.6 ThingsBoard.Cloud (via MQTT) ==
582
583 === 3.6.1 Configure ThingsBoard ===
584
585 ==== 3.6.1.1 Create Device ====
586
587
588 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
589
590 [[image:image-20240820112210-29.png]]
591
592
593 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
594
595
596 (% style="color:blue" %)**Uplink Converter**
597
598 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
599
600 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
601
602 [[image:image-20240820112222-30.png]]
603
604 (% style="color:blue" %)**Downlink Converter**
605
606 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
607
608 [[image:image-20240820112236-31.png]]
609
610 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
611
612
613 ==== 3.6.1.3 MQTT Integration Setup ====
614
615
616 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
617
618 [[image:image-20240820112247-32.png]]
619
620 * The next steps is to add the recently created uplink and downlink converters;
621
622 [[image:image-20240820112302-33.png]]
623
624 [[image:image-20240820112316-34.png]]
625
626 (% style="color:blue" %)**Add a topic filter:**
627
628 Consistent with the theme of the node setting.
629
630 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
631
632 [[image:image-20240820112330-35.png]]
633
634
635 === 3.6.2 Simulate with MQTT.fx ===
636
637 [[image:image-20240820112340-36.png]]
638
639 [[image:image-20240820112351-37.png]]
640
641
642 === 3.6.3 Configure NB-IoT Sensor ===
643
644
645 (% style="color:blue" %)**AT Commands**
646
647 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
648
649 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
650
651 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
652
653 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
654
655 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
656
657 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
658
659 Test Uplink by click the button for 1 second
660
661 [[image:image-20240820112404-38.png]]
662
663 [[image:image-20240820112416-39.png]]
664
665 [[image:image-20240820112426-40.png]]
666
667
668 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
669
670 === 3.7.1 Create device & Get Credentials ===
671
672
673 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
674
675 [[image:image-20240820112516-41.png]]
676
677 [[image:image-20240820112526-42.png]]
678
679 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
680
681 [[image:image-20240820112539-43.png]]
682
683 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
684
685 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
686
687 * (% style="color:#037691" %)**Profile Name: “Any name”**
688
689 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
690
691 * (% style="color:#037691" %)**Broker Port: 8883**
692
693 * (% style="color:#037691" %)**Client ID: “Any value”**
694
695 (% style="color:blue" %)**On the section User credentials, set the following information:**
696
697 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
698
699 * (% style="color:#037691" %)**Password: “Your device token”**
700
701 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
702
703 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
704
705 (% style="color:blue" %)**AT command:**
706
707 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
708
709 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
710
711 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
712
713 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
714
715 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
716
717 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
718
719 === 3.7.2 Simulate with MQTT.fx ===
720
721
722 [[image:image-20240820112552-44.png]]
723
724 [[image:image-20240820112604-45.png]]
725
726 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
727
728 [[image:image-20240820112615-46.png]]
729
730 [[image:image-20240820112626-47.png]]
731
732
733 === 3.7.3 tago data ===
734
735
736 [[image:image-20240820112637-48.png]]
737
738 [[image:image-20240820112647-49.png]]
739
740
741 == 3.8 TCP Connection ==
742
743
744 (% style="color:blue" %)**AT command:**
745
746 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
747
748 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
749
750 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
751
752 (% style="color:blue" %)**Sensor Console Output when Uplink:**
753
754 [[image:image-20240820112704-50.png]]
755
756 (% style="color:blue" %)**See result in TCP Server:**
757
758 [[image:image-20240820112716-51.png]]
759
760
761 == 3.9 AWS Connection ==
762
763
764 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
765
766
767 = 4. COAP/UDP/MQTT/TCP downlink =
768
769 == 4.1 MQTT (via MQTT.fx) ==
770
771
772 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
773
774 **1.** Configure node MQTT connection (via MQTT.fx):
775
776 (% style="color:blue" %)**AT command:**
777
778 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
779
780 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
781
782 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
783
784 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
785
786 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
787
788 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
789
790 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
791
792 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
793
794
795 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
796
797 [[image:image-20240820112813-54.png]]
798
799
800 **3. **The downlink command can be successfully sent only when the downlink port is open.
801
802 The downlink port is opened for about 3 seconds after uplink packets are sent.
803
804 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
805
806 [[image:image-20240820112824-55.png]]
807
808 [[image:image-20240820112835-56.png]]
809
810 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
811
812
813 == 4.2 UDP (via Thingseye) ==
814
815
816 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
817
818 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
819
820 [[image:image-20240820141843-2.png||height="546" width="821"]]
821
822 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
823
824 [[image:image-20240820143316-3.png||height="555" width="1170"]]
825
826 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
827
828 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
829
830 [[image:image-20240820143820-4.png||height="554" width="1168"]]
831
832 After the command is successfully added, the platform will send the command down on the node's next uplink.
833
834 [[image:image-20240820144913-6.png||height="585" width="1232"]]
835
836 [[image:image-20240820145133-7.png||height="582" width="1227"]]
837
838 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
839
840 [[image:image-20240820145309-8.png]]
841
842
843 = 5. GPS positioning function =
844
845 == 1. Turn on GPS function ==
846
847
848 (% class="wikigeneratedid" %)
849 AT+GPS=1 or 0  ~/~/ GPS function on or off
850
851
852 == 2. Extend the time to turn on GNSS ==
853
854
855 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
856
857
858 == 3. Get or set GPS positioning interval in units of hour ==
859
860
861 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
862
863
864 = 6. FAQ =
865
866 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
867
868
869 The NB series has the feature for Multi Sampling and one uplink. See one of them
870
871 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
872
873 User can use this feature for below purpose:
874
875 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
876 1. Give more sampling data points.
877 1. Increase reliable in transmission. For example. If user set
878 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
879 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
880 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
881 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
882
883 == 6.2 Why the uplink JSON format is not standard? ==
884
885
886 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
887
888 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
889
890 [[image:image-20240820112848-57.png]]
891
892
893 = 7. Trouble Shooting: =
894
895 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
896
897
898 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
899
900 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
901
902 [[image:image-20240820112859-58.png]]
903
904 If fail to attach network, it will shows signal 99. as below:
905
906 [[image:image-20240820112908-59.png]]
907
908 (% class="lead" %)
909 When see this issue, below are the checklist:
910
911 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
912 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
913 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
914 * Check if the device is attached to Carrier network but reject. (need to check with operator).
915 * Check if the antenna is connected firmly.
916
917 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
918
919
920 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
921
922
923 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
924
925 [[image:image-20240820113015-60.png]]
926
927
928 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
929
930 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
931 === UDP: ===
932
933 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
934 Its downlink command is the same as the AT command, but brackets are required.
935 Example:
936
937 {AT+TDC=300}
938
939
940 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
941 === MQTT: ===
942
943 Json:
944
945 The Json format in MQTT mode needs to be configured with all commands.
946 If you have configurations that need to be changed, please change them in the template below.
947 Template:
948
949 {
950 "AT+SERVADDR":"119.91.62.30,1882",
951 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
952 "AT+UNAME":"usenamedragino",
953 "AT+PWD":"passworddragino",
954 "AT+PUBTOPIC":"123",
955 "AT+SUBTOPIC":"321",
956 "AT+TDC":"7200",
957 "AT+INTMOD":"0",
958 "AT+APN":"NULL",
959 "AT+5VT":"0",
960 "AT+PRO":"3,5",
961 "AT+TR":"900",
962 "AT+NOUD":"0",
963 "AT+CSQTIME":"5",
964 "AT+DNSTIMER":"0",
965 "AT+TLSMOD":"0,0",
966 "AT+MQOS":"0",
967 "AT+TEMPALARM1":"0",
968 "AT+TEMPALARM2":"10",
969 "AT+TEMPALARM3":"0"
970 }
971
972 Hex:
973
974 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
975
976 The supported commands are consistent with LoRaWAN's hex commands.
977 Please refer to the following link to obtain the hex format:
978
979 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
980
981
982 == 7.4 What if the signal is good but the domain name resolution fails? ==
983
984
985 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
986
987 [[image:image-20240827150705-6.png||height="489" width="687"]]
988
989 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
990
991 * Set the DNS
992
993 (% style="color:blue" %)**AT Command: AT+GDNS**
994
995 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
996
997 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
998
999 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1000
1001 Example:
1002
1003 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
1004
1005
1006 == 7.5 GPS debugging ==
1007
1008
1009 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1010
1011 [[image:image-20240903104250-9.png||height="275" width="614"]]
1012
1013
1014 [[image:image-20240903104431-10.png||height="291" width="621"]]
1015
1016
1017 === 7.5.1 GPS commands ===
1018
1019
1020 The following are three related AT commands that introduce GPS functions.
1021
1022 * **Turn on/off GPS**
1023
1024 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1025
1026 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1027
1028 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1029
1030 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1031
1032 Format: Command Code (0x11) followed by 1 byte.
1033
1034 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1035
1036 * **Set GNSS open time**
1037
1038 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1039
1040 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1041
1042 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1043
1044 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1045
1046 Format: Command Code (0x10) followed by 2 bytes.
1047
1048 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1049
1050 * **Set GPS positioning interval**
1051
1052 Feature: Set GPS positioning interval (unit: hour).
1053
1054 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1055
1056 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1057
1058 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1059
1060 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1061
1062 Format: Command Code (0x12) followed by 3 bytes.
1063
1064 Example: 24 hours:  24(D)=0x18(H)
1065
1066 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1067
1068
1069 === 7.5.2 GPS workflow ===
1070
1071
1072 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1073
1074 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1075
1076 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1077
1078 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1079
1080 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1081
1082 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1083
1084 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1085
1086
1087 === 7.5.3 GPS debugging methods ===
1088
1089
1090 In summary, we can deduce the methods of debugging GPS:
1091
1092 * **Check whether the GPS function is enabled.**
1093
1094 [[image:image-20240903102327-5.png||height="271" width="529"]]
1095
1096 * **Check whether the GPS antenna is loose**.
1097
1098 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1099
1100 [[image:image-20240903094214-1.png||height="340" width="461"]]
1101
1102 * **Use the AT+GNSST command to extend the positioning time.**
1103
1104 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1105
1106 If the location fails, users can extend the location time.
1107
1108 [[image:image-20240903102641-8.png||height="303" width="600"]]
1109
1110
1111
1112
1113