Version 130.1 by Xiaoling on 2024/09/14 10:55

Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11
12 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
13
14
15 = 2. Attach Network =
16
17 == 2.1 General Configure to attach network ==
18
19
20 To attache end nodes to NB-IoT or LTE-M Network, You need to:
21
22 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
23 1. Power Off End Node ( See below for the power off/on position)
24 1. Insert the SIM card to Sensor. ( See below for direction)
25 1. Power On End Node
26 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
27
28 [[image:image-20240602220856-1.png]]
29
30
31 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230808205045-1.png?width=438&height=293&rev=1.1||alt="image-20230808205045-1.png"]]
32
33
34 After doing above, the end nodes should be able to attach to NB-IoT network .
35
36 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
37
38 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
39
40 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
41
42 Make sure you use a the NB-IoT or LTE-M SIM card.
43
44 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
45 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
46 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
47 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
48
49 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
50 )))|(% style="width:351px" %)(((
51 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
52 )))|(% style="width:120px" %)UK: Band20
53 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
54 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
55
56 == 2.2 Speed Up Network Attach time ==
57
58
59 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
60
61 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
62
63 Attache to 1NCE card for Australia use:
64
65 * AT+COPS=1,2,"50501",8
66 * AT+QCFG="band",0,0x8000000,0x8000000,1
67
68 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
69
70 AT+QENG="servingcell"
71 +QENG: "servingcell","NOCONN","eMTC","FD
72 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
73
74
75 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
76
77 === **1. Configure Frequency Band** ===
78
79 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
80
81 <GSM_bandval>:
82
83 0 No change 
84 0x1 EGSM900
85 0x2 DCS1800
86 0x4 GSM850 
87 0x8 PCS1900 
88 0xF All of the supported bands above
89
90 <eMTC_bandval>:
91
92 0 No change 
93 0x1  LTE B1
94 0x2  LTE B2 
95 0x4  LTE B3 
96 0x8  LTE B4 
97 0x10  LTE B5 
98 0x80  LTE B8 
99 0x800  LTE B12 
100 0x1000  LTE B13 
101 0x20000  LTE B18 
102 0x40000  LTE B19 
103 0x80000  LTE B20 
104 0x1000000  LTE B25 
105 0x2000000  LTE B26 
106 0x4000000  LTE B27 
107 0x8000000  LTE B28 
108 0x40000000  LTE B31 
109 0x20000000000000000  LTE B66 
110 0x800000000000000000  LTE B72 
111 0x1000000000000000000  LTE B73 
112 0x1000000000000000000000  LTE B85
113
114 <NB-IoT_bandval>:
115
116 0 No change 
117 0x1  LTE B1
118 0x2  LTE B2 
119 0x4  LTE B3 
120 0x8  LTE B4 
121 0x10  LTE B5 
122 0x80  LTE B8 
123 0x800  LTE B12 
124 0x1000  LTE B13 
125 0x20000  LTE B18 
126 0x40000  LTE B19 
127 0x80000  LTE B20 
128 0x1000000  LTE B25 
129 0x8000000  LTE B28 
130 0x40000000  LTE B31 
131 0x20000000000000000  LTE B66
132
133 0x400000000000000000  LTE B71
134 0x800000000000000000  LTE B72 
135 0x1000000000000000000  LTE B73 
136 0x1000000000000000000000  LTE B85
137
138 For example, setting the LTE-M network frequency band to 3.
139
140 AT+QCFG="band",0xF,0x4,0,1
141
142 When searching for all bands, the value of this command is set to:
143
144 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
145
146
147 === **2. Configure search network sequence** ===
148
149 AT+QCFG="nwscanseq",<scanseq>,1
150
151 <scanseq>:
152
153 00 Automatic (eMTC → NB-IoT → GSM) 
154 01 GSM 
155 02 eMTC 
156 03 NB-IoT
157
158 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
159
160
161 === **3. Configure Network Category to be Searched for under LTE RAT** ===
162
163 AT+QCFG="iotopmode",mode,1
164
165 0 eMTC 
166 1 NB-IoT 
167 2 eMTC and NB-IoT
168
169
170 === **4. AT command to set frequency band and network category** ===
171
172 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
173
174 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
175
176 **Example :**
177
178 Taking the use of 1nce cards in **the United States** as an example.
179
180 AT+APN=iot.1nce.net  ~/~/set APN
181
182 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
183
184 AT+IOTMOD=0  ~/~/ Set  eMTC Network
185
186 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
187
188
189 = 3. Configure to connect to different servers =
190
191 == 3.1 General UDP Connection ==
192
193
194 The NB-IoT Sensor can send packet to server use UDP protocol.
195
196
197 === 3.1.1 Simulate UDP Connection by PC tool ===
198
199
200 We can use PC tool to simulate UDP connection to make sure server works ok.
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
203
204
205 === 3.1.2 Configure NB-IoT Sensor ===
206
207 ==== 3.1.2.1 AT Commands ====
208
209
210 (% style="color:blue" %)**AT Commands:**
211
212 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
213
214 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
215
216 [[image:image-20240819102802-1.png]]
217
218
219 ==== 3.1.2.2 Uplink Example ====
220
221
222 [[image:image-20240819105418-8.png||height="611" width="1287"]]
223
224
225 == 3.2 General COAP Connection ==
226
227
228 The NB-IoT Sensor can send packet to server use COAP protocol.
229
230 Below are the commands.
231
232 (% style="color:blue" %)**AT Commands:**
233
234 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
235
236 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
237
238 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
239 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
240
241 [[image:image-20240819103212-2.png]]
242
243
244 === 3.2.1 Uplink Example ===
245
246
247 [[image:image-20240819103909-4.png||height="453" width="955"]]
248
249
250 == 3.2 General MQTT Connection ==
251
252
253 The NB-IoT Sensor can send packet to server use MQTT protocol.
254
255 Below are the commands.
256
257 (% style="color:blue" %)**AT Commands:**
258
259 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
260
261 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
262
263 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
264
265 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
266
267 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
268
269 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
270
271 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
272
273 [[image:image-20240819105003-7.png||height="613" width="458"]]
274
275
276 [[image:image-20240819104942-6.png||height="702" width="974"]]
277
278 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
279
280
281 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
282
283 === 3.3.1 Get MQTT Credentials ===
284
285
286 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
287
288 [[image:image-20240819173602-1.png||height="401" width="743"]]
289
290 [[image:image-20240819173706-3.png||height="595" width="597"]]
291
292
293 === 3.3.2 Simulate with MQTT.fx ===
294
295 ==== 3.3.2.1 Establish MQTT Connection ====
296
297
298 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
299
300 [[image:image-20240819173826-4.png||height="534" width="734"]]
301
302 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
303
304 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
305
306 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
307
308 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
309
310 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
311
312
313 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
314
315
316 [[image:image-20240819174033-5.png]]
317
318 [[image:image-20240819174209-6.png]]
319
320 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
321
322 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
323
324 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
325
326 Where 63 and 67 are the value to be published to field1 & field2.
327
328 (% style="color:blue" %)**Result: **
329
330 [[image:image-20240819174314-7.png||height="469" width="785"]]
331
332
333 === 3.3.3 Configure NB-IoT Sensor for connection ===
334
335 ==== 3.3.3.1 AT Commands: ====
336
337
338 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
339
340 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
341
342 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
343
344 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
345
346 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
347
348 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
349
350 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
351
352
353 ==== 3.3.3.2 Uplink Examples ====
354
355
356 [[image:image-20240819174540-8.png]]
357
358 For SE01-NB
359
360 For DDS20-NB
361
362 For DDS45-NB
363
364 For DDS75-NB
365
366 For NMDS120-NB
367
368 For SPH01-NB
369
370 For NLM01-NB
371
372 For NMDS200-NB
373
374 For CPN01-NB
375
376 For DS03A-NB
377
378 For SN50V3-NB
379
380
381 ==== 3.3.3.3 Map fields to sensor value ====
382
383
384 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
385
386 [[image:image-20240819174610-9.png]]
387
388 [[image:image-20240819174618-10.png]]
389
390 Below is the NB-IoT Product Table show the mapping.
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
393 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:139px" %)Field4|(% style="background-color:#4f81bd; color:white; width:141px" %)Field5|(% style="background-color:#4f81bd; color:white; width:142px" %)Field6|(% style="background-color:#4f81bd; color:white; width:151px" %)Field7|(% style="background-color:#4f81bd; color:white; width:137px" %)Field8|(% style="background-color:#4f81bd; color:white; width:69px" %)Field9|(% style="background-color:#4f81bd; color:white; width:65px" %)Field10
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:139px" %)dielectric_constant|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
396 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
398 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
399 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
400 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
401 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
402 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
403 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:139px" %)calc flag|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
404 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:139px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:141px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:142px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:137px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:69px" %)Battery|(% colspan="1" rowspan="1" style="width:65px" %)RSSI
405 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:142px" %)adc0|(% colspan="1" rowspan="1" style="width:151px" %)Temperature |(% colspan="1" rowspan="1" style="width:137px" %)Humidity|(% colspan="1" rowspan="1" style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc0|(% colspan="1" style="width:151px" %)distance|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
407 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)adc0|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc1|(% colspan="1" style="width:151px" %)Temperature|(% colspan="1" style="width:137px" %)Humidity|(% colspan="1" style="width:69px" %)adc4|(% colspan="1" style="width:65px" %)
408 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)DS18B20 Temp2|(% colspan="1" style="width:137px" %)DS18B20 Temp3|(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
409 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)Weight|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
410 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)count|(% colspan="1" style="width:141px" %) |(% colspan="1" style="width:142px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
411
412 == 3.4 [[Datacake>>https://datacake.co/]] ==
413
414 (% class="wikigeneratedid" %)
415 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
416
417 (% class="wikigeneratedid" %)
418 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
419
420 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
421
422 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
423
424
425 === 3.4.1 For device Already has template ===
426
427 ==== 3.4.1.1 Create Device ====
428
429
430 (% style="color:blue" %)**Add Device**(%%) in DataCake.
431
432 [[image:image-20240820110003-1.png]]
433
434 [[image:image-20240820110017-2.png]]
435
436 (% style="color:blue" %)**Choose the correct model**(%%) from template.
437
438 [[image:image-20240820110031-3.png]]
439
440 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
441
442 [[image:image-20240820110048-4.png]]
443
444 [[image:image-20240820110103-5.png]]
445
446 [[image:image-20240820110114-6.png]]
447
448
449 === 3.4.2 For Device already registered in DataCake before shipped ===
450
451 ==== 3.4.2.1 Scan QR Code to get the device info ====
452
453
454 Users can use their phones or computers to scan QR codes to obtain device data information.
455
456 [[image:image-20240820110129-7.png]]
457
458 [[image:image-20240820110218-9.png]]
459
460
461 ==== 3.4.2.2 Claim Device to User Account ====
462
463 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
464
465
466 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
467
468
469 **Step1: Add a device**
470
471 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
472
473
474 **Step2: Choose your device type,please select dragino NB-IOT device**
475
476 [[image:image-20240820110247-11.png]]
477
478
479 **Step3: Choose to create a new device**
480
481 [[image:image-20240820111016-12.png]]
482
483
484 **Step4: Fill in the device ID of your NB device**
485
486 [[image:image-20240820111101-13.png]]
487
488
489 **Step5: Please select your device plan according to your needs and complete the creation of the device**
490
491 [[image:image-20240820111113-14.png]]
492
493
494 **Step6: Please add the decoder at the payload decoder of the device configuration.**
495
496 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
497
498 [[image:image-20240820111236-15.png]]
499
500 [[image:image-20240820111248-16.png]]
501
502
503 **Step7: Add the output of the decoder as a field**
504
505 [[image:image-20240820111259-17.png]]
506
507
508 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
509
510 [[image:image-20240820111312-18.png]]
511
512 [[image:image-20240820111322-19.png]]
513
514 [[image:image-20240820111333-20.png]]
515
516
517 === 3.4.4 For device have not configured to connect to DataCake ===
518
519
520 (% class="lead" %)
521 Use AT command for connecting to DataCake
522
523 (% style="color:blue" %)**AT+PRO=2,0**
524
525 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
526
527
528 == 3.5 Node-Red (via MQTT) ==
529
530 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
531
532
533 Take S31-NB UDP protocol as an example.
534
535 Dragino provides input flow examples for the sensors.
536
537 User can download the required JSON file through Dragino Node-RED input flow template.
538
539 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
540
541 We can directly import the template.
542
543 The templates for S31-NB and NB95S31B are the same.
544
545 [[image:image-20240820111353-21.png]]
546
547 Please select the NB95S31B template.
548
549 [[image:image-20240820111405-22.png]]
550
551 [[image:image-20240820111418-23.png]]
552
553 [[image:image-20240820111427-24.png]]
554
555 Successfully imported template.
556
557 [[image:image-20240820111438-25.png]]
558
559 Users can set UDP port.
560
561 [[image:image-20240820111448-26.png]]
562
563
564 === 3.5.2 Simulate Connection ===
565
566
567 We have completed the configuration of UDP. We can try sending packets to node red.
568
569 [[image:image-20240820111504-27.png]]
570
571 [[image:image-20240820111515-28.png]]
572
573
574 === 3.5.3 Configure NB-IoT Sensors ===
575
576
577 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
578 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
579 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
580 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
581 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
582 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
583
584
585 == 3.6 ThingsBoard.Cloud (via MQTT) ==
586
587 === 3.6.1 Configure ThingsBoard ===
588
589 ==== 3.6.1.1 Create Device ====
590
591
592 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
593
594 [[image:image-20240820112210-29.png]]
595
596
597 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
598
599
600 (% style="color:blue" %)**Uplink Converter**
601
602 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
603
604 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
605
606 [[image:image-20240820112222-30.png]]
607
608 (% style="color:blue" %)**Downlink Converter**
609
610 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
611
612 [[image:image-20240820112236-31.png]]
613
614 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
615
616
617 ==== 3.6.1.3 MQTT Integration Setup ====
618
619
620 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
621
622 [[image:image-20240820112247-32.png]]
623
624 * The next steps is to add the recently created uplink and downlink converters;
625
626 [[image:image-20240820112302-33.png]]
627
628 [[image:image-20240820112316-34.png]]
629
630 (% style="color:blue" %)**Add a topic filter:**
631
632 Consistent with the theme of the node setting.
633
634 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
635
636 [[image:image-20240820112330-35.png]]
637
638
639 === 3.6.2 Simulate with MQTT.fx ===
640
641 [[image:image-20240820112340-36.png]]
642
643 [[image:image-20240820112351-37.png]]
644
645
646 === 3.6.3 Configure NB-IoT Sensor ===
647
648
649 (% style="color:blue" %)**AT Commands**
650
651 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
652
653 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
654
655 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
656
657 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
658
659 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
660
661 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
662
663 Test Uplink by click the button for 1 second
664
665 [[image:image-20240820112404-38.png]]
666
667 [[image:image-20240820112416-39.png]]
668
669 [[image:image-20240820112426-40.png]]
670
671
672 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
673
674 === 3.7.1 Create device & Get Credentials ===
675
676
677 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
678
679 [[image:image-20240820112516-41.png]]
680
681 [[image:image-20240820112526-42.png]]
682
683 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
684
685 [[image:image-20240820112539-43.png]]
686
687 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
688
689 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
690
691 * (% style="color:#037691" %)**Profile Name: “Any name”**
692
693 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
694
695 * (% style="color:#037691" %)**Broker Port: 8883**
696
697 * (% style="color:#037691" %)**Client ID: “Any value”**
698
699 (% style="color:blue" %)**On the section User credentials, set the following information:**
700
701 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
702
703 * (% style="color:#037691" %)**Password: “Your device token”**
704
705 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
706
707 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
708
709 (% style="color:blue" %)**AT command:**
710
711 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
712
713 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
714
715 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
716
717 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
718
719 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
720
721 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
722
723
724 === 3.7.2 Simulate with MQTT.fx ===
725
726
727 [[image:image-20240820112552-44.png]]
728
729 [[image:image-20240820112604-45.png]]
730
731 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
732
733 [[image:image-20240820112615-46.png]]
734
735 [[image:image-20240820112626-47.png]]
736
737
738 === 3.7.3 tago data ===
739
740
741 [[image:image-20240820112637-48.png]]
742
743 [[image:image-20240820112647-49.png]]
744
745
746 == 3.8 TCP Connection ==
747
748
749 (% style="color:blue" %)**AT command:**
750
751 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
752
753 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
754
755 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
756
757 (% style="color:blue" %)**Sensor Console Output when Uplink:**
758
759 [[image:image-20240820112704-50.png]]
760
761 (% style="color:blue" %)**See result in TCP Server:**
762
763 [[image:image-20240820112716-51.png]]
764
765
766 == 3.9 AWS Connection ==
767
768
769 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
770
771
772 = 4. COAP/UDP/MQTT/TCP downlink =
773
774 == 4.1 MQTT (via MQTT.fx) ==
775
776
777 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
778
779 **1.** Configure node MQTT connection (via MQTT.fx):
780
781 (% style="color:blue" %)**AT command:**
782
783 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
784
785 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
786
787 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
788
789 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
790
791 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
792
793 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
794
795 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
796
797 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
798
799
800 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
801
802 [[image:image-20240820112813-54.png]]
803
804
805 **3. **The downlink command can be successfully sent only when the downlink port is open.
806
807 The downlink port is opened for about 3 seconds after uplink packets are sent.
808
809 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
810
811 [[image:image-20240820112824-55.png]]
812
813 [[image:image-20240820112835-56.png]]
814
815 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
816
817
818 == 4.2 UDP (via Thingseye) ==
819
820
821 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
822
823 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
824
825 [[image:image-20240820141843-2.png||height="546" width="821"]]
826
827 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
828
829 [[image:image-20240820143316-3.png||height="555" width="1170"]]
830
831 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
832
833 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
834
835 [[image:image-20240820143820-4.png||height="554" width="1168"]]
836
837 After the command is successfully added, the platform will send the command down on the node's next uplink.
838
839 [[image:image-20240820144913-6.png||height="585" width="1232"]]
840
841 [[image:image-20240820145133-7.png||height="582" width="1227"]]
842
843 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
844
845 [[image:image-20240820145309-8.png]]
846
847
848 = 5. GPS positioning function =
849
850 == 1. Turn on GPS function ==
851
852
853 (% class="wikigeneratedid" %)
854 AT+GPS=1 or 0  ~/~/ GPS function on or off
855
856
857 == 2. Extend the time to turn on GNSS ==
858
859
860 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
861
862
863 == 3. Get or set GPS positioning interval in units of hour ==
864
865
866 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
867
868
869 = 6. FAQ =
870
871 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
872
873
874 The NB series has the feature for Multi Sampling and one uplink. See one of them
875
876 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
877
878 User can use this feature for below purpose:
879
880 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
881 1. Give more sampling data points.
882 1. Increase reliable in transmission. For example. If user set
883 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
884 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
885 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
886 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
887
888
889 == 6.2 Why the uplink JSON format is not standard? ==
890
891
892 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
893
894 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
895
896 [[image:image-20240820112848-57.png]]
897
898
899 = 7. Trouble Shooting: =
900
901 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
902
903
904 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
905
906 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
907
908 [[image:image-20240820112859-58.png]]
909
910 If fail to attach network, it will shows signal 99. as below:
911
912 [[image:image-20240820112908-59.png]]
913
914 (% class="lead" %)
915 When see this issue, below are the checklist:
916
917 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
918 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
919 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
920 * Check if the device is attached to Carrier network but reject. (need to check with operator).
921 * Check if the antenna is connected firmly.
922
923 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
924
925
926 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
927
928
929 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
930
931 [[image:image-20240820113015-60.png]]
932
933
934 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
935
936 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
937 === UDP: ===
938
939 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
940 Its downlink command is the same as the AT command, but brackets are required.
941 Example:
942
943 {AT+TDC=300}
944
945
946 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
947 === MQTT: ===
948
949 Json:
950
951 The Json format in MQTT mode needs to be configured with all commands.
952 If you have configurations that need to be changed, please change them in the template below.
953 Template:
954
955 {
956 "AT+SERVADDR":"119.91.62.30,1882",
957 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
958 "AT+UNAME":"usenamedragino",
959 "AT+PWD":"passworddragino",
960 "AT+PUBTOPIC":"123",
961 "AT+SUBTOPIC":"321",
962 "AT+TDC":"7200",
963 "AT+INTMOD":"0",
964 "AT+APN":"NULL",
965 "AT+5VT":"0",
966 "AT+PRO":"3,5",
967 "AT+TR":"900",
968 "AT+NOUD":"0",
969 "AT+CSQTIME":"5",
970 "AT+DNSTIMER":"0",
971 "AT+TLSMOD":"0,0",
972 "AT+MQOS":"0",
973 "AT+TEMPALARM1":"0",
974 "AT+TEMPALARM2":"10",
975 "AT+TEMPALARM3":"0"
976 }
977
978 Hex:
979
980 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
981
982 The supported commands are consistent with LoRaWAN's hex commands.
983 Please refer to the following link to obtain the hex format:
984
985 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
986
987
988 == 7.4 What if the signal is good but the domain name resolution fails? ==
989
990
991 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
992
993 [[image:image-20240827150705-6.png||height="489" width="687"]]
994
995 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
996
997 * Set the DNS
998
999 (% style="color:blue" %)**AT Command: AT+GDNS**
1000
1001 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
1002
1003 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
1004
1005 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1006
1007 Example:
1008
1009 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
1010
1011
1012 == 7.5 GPS debugging ==
1013
1014
1015 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1016
1017 [[image:image-20240903104250-9.png||height="275" width="614"]]
1018
1019
1020 [[image:image-20240903104431-10.png||height="291" width="621"]]
1021
1022
1023 === 7.5.1 GPS commands ===
1024
1025
1026 The following are three related AT commands that introduce GPS functions.
1027
1028 * **Turn on/off GPS**
1029
1030 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1031
1032 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1033
1034 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1035
1036 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1037
1038 Format: Command Code (0x11) followed by 1 byte.
1039
1040 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1041
1042 * **Set GNSS open time**
1043
1044 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1045
1046 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1047
1048 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1049
1050 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1051
1052 Format: Command Code (0x10) followed by 2 bytes.
1053
1054 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1055
1056 * **Set GPS positioning interval**
1057
1058 Feature: Set GPS positioning interval (unit: hour).
1059
1060 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1061
1062 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1063
1064 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1065
1066 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1067
1068 Format: Command Code (0x12) followed by 3 bytes.
1069
1070 Example: 24 hours:  24(D)=0x18(H)
1071
1072 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1073
1074
1075 === 7.5.2 GPS workflow ===
1076
1077
1078 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1079
1080 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1081
1082 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1083
1084 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1085
1086 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1087
1088 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1089
1090 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1091
1092
1093 === 7.5.3 GPS debugging methods ===
1094
1095
1096 In summary, we can deduce the methods of debugging GPS:
1097
1098 * **Check whether the GPS function is enabled.**
1099
1100 [[image:image-20240903102327-5.png||height="271" width="529"]]
1101
1102 * **Check whether the GPS antenna is loose**.
1103
1104 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1105
1106 [[image:image-20240903094214-1.png||height="340" width="461"]]
1107
1108 * **Use the AT+GNSST command to extend the positioning time.**
1109
1110 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1111
1112 If the location fails, users can extend the location time.
1113
1114 [[image:image-20240903102641-8.png||height="303" width="600"]]
1115
1116
1117
1118
1119