Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
12
13
14 = 2. Attach Network =
15
16 == 2.1 General Configure to attach network ==
17
18 To attache end nodes to NB-IoT or LTE-M Network, You need to:
19
20 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
21 1. Power Off End Node ( See below for the power off/on position)
22 1. Insert the SIM card to Sensor. ( See below for direction)
23 1. Power On End Node
24 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
25
26 [[image:image-20240602220856-1.png]]
27
28
29 放一张如何插卡图片。
30
31
32 After doing above, the end nodes should be able to attach to NB-IoT network .
33
34 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
35
36 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
37
38 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
39
40 Make sure you use a the NB-IoT or LTE-M SIM card.
41
42 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
43 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
44 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
45 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
46
47 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
48 )))|(% style="width:351px" %)(((
49 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
50 )))|(% style="width:120px" %)UK: Band20
51 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
52 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
53
54 == 2.2 Speed Up Network Attach time ==
55
56 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
57
58 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
59
60 Attache to 1NCE card for Australia use:
61
62 * AT+COPS=1,2,"50501",8
63 * AT+QCFG="band",0,0x8000000,0x8000000,1
64
65 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
66
67 AT+QENG="servingcell"
68 +QENG: "servingcell","NOCONN","eMTC","FD
69 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
70
71
72 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
73
74 === **1.Configure Frequency Band** ===
75
76 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
77
78 <GSM_bandval>:
79
80 0 No change 
81 0x1 EGSM900
82 0x2 DCS1800
83 0x4 GSM850 
84 0x8 PCS1900 
85 0xF All of the supported bands above
86
87 <eMTC_bandval>:
88
89 0 No change 
90 0x1  LTE B1
91 0x2  LTE B2 
92 0x4  LTE B3 
93 0x8  LTE B4 
94 0x10  LTE B5 
95 0x80  LTE B8 
96 0x800  LTE B12 
97 0x1000  LTE B13 
98 0x20000  LTE B18 
99 0x40000  LTE B19 
100 0x80000  LTE B20 
101 0x1000000  LTE B25 
102 0x2000000  LTE B26 
103 0x4000000  LTE B27 
104 0x8000000  LTE B28 
105 0x40000000  LTE B31 
106 0x20000000000000000  LTE B66 
107 0x800000000000000000  LTE B72 
108 0x1000000000000000000  LTE B73 
109 0x1000000000000000000000  LTE B85
110
111 <NB-IoT_bandval>:
112
113 0 No change 
114 0x1  LTE B1
115 0x2  LTE B2 
116 0x4  LTE B3 
117 0x8  LTE B4 
118 0x10  LTE B5 
119 0x80  LTE B8 
120 0x800  LTE B12 
121 0x1000  LTE B13 
122 0x20000  LTE B18 
123 0x40000  LTE B19 
124 0x80000  LTE B20 
125 0x1000000  LTE B25 
126 0x8000000  LTE B28 
127 0x40000000  LTE B31 
128 0x20000000000000000  LTE B66
129
130 0x400000000000000000  LTE B71
131 0x800000000000000000  LTE B72 
132 0x1000000000000000000  LTE B73 
133 0x1000000000000000000000  LTE B85
134
135 For example, setting the LTE-M network frequency band to 3.
136
137 AT+QCFG="band",0xF,0x4,0,1
138
139 When searching for all bands, the value of this command is set to:
140
141 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
142
143
144 === **2.Configure search network sequence** ===
145
146 AT+QCFG="nwscanseq",<scanseq>,1
147
148 <scanseq>:
149
150 00 Automatic (eMTC → NB-IoT → GSM) 
151 01 GSM 
152 02 eMTC 
153 03 NB-IoT
154
155 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
156
157 === **3.Configure Network Category to be Searched for under LTE RAT** ===
158
159 AT+QCFG="iotopmode",mode,1
160
161 0 eMTC 
162 1 NB-IoT 
163 2 eMTC and NB-IoT
164
165 === **4.AT command to set frequency band and network category** ===
166
167 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
168
169 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
170
171 **Example :**
172
173 Taking the use of 1nce cards in **the United States** as an example.
174
175 AT+APN=iot.1nce.net  ~/~/set APN
176
177 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
178
179 AT+IOTMOD=0  ~/~/ Set  eMTC Network
180
181 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
182
183
184 = 3. Configure to connect to different servers =
185
186 == 3.1 General UDP Connection ==
187
188 The NB-IoT Sensor can send packet to server use UDP protocol.
189
190 === 3.1.1 Simulate UDP Connection by PC tool ===
191
192 We can use PC tool to simulate UDP connection to make sure server works ok.
193
194 [[image:image-20230802112413-1.png||height="468" width="1024"]]
195
196 === 3.1.2 Configure NB-IoT Sensor ===
197
198 ==== 3.1.2.1 AT Commands ====
199
200 (% style="color:blue" %)**AT Commands:**
201
202 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
203
204 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/ Set UDP server address and port
205
206 [[image:image-20230802112413-2.png]]
207
208 ==== 3.1.2.2 Uplink Example ====
209
210 [[image:image-20230802112413-3.png]]
211
212 == 3.2 General COAP Connection ==
213
214 The NB-IoT Sensor can send packet to server use COAP protocol.
215
216 Below are the commands.
217
218 (% style="color:blue" %)**AT Commands:**
219
220 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
221
222 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
223
224 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
225 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
226
227 === 3.2.1 Uplink Example ===
228
229
230
231 == 3.2 General MQTT Connection ==
232
233 The NB-IoT Sensor can send packet to server use MQTT protocol.
234
235 Below are the commands.
236
237 (% style="color:blue" %)**AT Commands:**
238
239 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
240
241 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
242
243 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
244
245 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
246
247 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
248
249 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
250
251 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
252
253 [[image:image-20230802112413-4.png]]
254
255 [[image:image-20230802112413-5.png||height="530" width="987"]]
256
257 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
258
259 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
260
261 === 3.3.1 Get MQTT Credentials ===
262
263 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
264
265 [[image:image-20230802112413-6.png||height="336" width="925"]]
266
267 [[image:image-20230802112413-7.png]]
268
269 === 3.3.2 Simulate with MQTT.fx ===
270
271 ==== 3.3.2.1 Establish MQTT Connection ====
272
273 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
274
275 [[image:image-20230802112413-8.png]]
276
277 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
278
279 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
280
281 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
282
283 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
284
285 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
286
287 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
288
289 [[image:image-20230802112413-9.png]]
290
291 [[image:image-20230802112413-10.png]]
292
293 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
294
295 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
296
297 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
298
299 Where 63 and 67 are the value to be published to field1 & field2.
300
301 (% style="color:blue" %)**Result: **
302
303 [[image:image-20230802112413-11.png||height="539" width="901"]]
304
305 === 3.3.3 Configure NB-IoT Sensor for connection ===
306
307 ==== 3.3.3.1 AT Commands: ====
308
309 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
310
311 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
312
313 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
314
315 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
316
317 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
318
319 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
320
321 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
322
323 ==== 3.3.3.2 Uplink Examples ====
324
325 [[image:image-20230816201942-1.png]]
326
327 For SE01-NB
328
329 For DDS20-NB
330
331 For DDS45-NB
332
333 For DDS75-NB
334
335 For NMDS120-NB
336
337 For SPH01-NB
338
339 For NLM01-NB
340
341 For NMDS200-NB
342
343 For CPN01-NB
344
345 For DS03A-NB
346
347 For SN50V3-NB
348
349 ==== 3.3.3.3 Map fields to sensor value ====
350
351 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
352
353 [[image:image-20230802112413-12.png||height="504" width="1011"]]
354
355 [[image:image-20230802112413-13.png||height="331" width="978"]]
356
357 Below is the NB-IoT Product Table show the mapping.
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
360 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
361 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
362 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
363 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
364 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
365 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
366 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
367 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
368 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
369 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
370 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
371 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
372 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
373 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
374 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
375 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
376 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
377 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
378
379 == 3.4 [[Datacake>>https://datacake.co/]] ==
380
381 (% class="wikigeneratedid" %)
382 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
383
384 (% class="wikigeneratedid" %)
385 As example for S31B-NB. there are two versions: **S31B-NB-1D and S31B-NB-GE.**
386
387 * (% style="color:blue" %)**S31B-NB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
388
389 * (% style="color:blue" %)**S31B-NB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
390
391 === 3.4.1 For device Already has template ===
392
393 ==== 3.4.1.1 Create Device ====
394
395 (% style="color:blue" %)**Add Device**(%%) in DataCake.
396
397 [[image:image-20230808162301-1.png||height="453" width="952"]]
398
399 [[image:image-20230808162342-2.png||height="541" width="952"]]
400
401 (% style="color:blue" %)**Choose the correct model**(%%) from template.
402
403 [[image:image-20230808162421-3.png]]
404
405 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
406
407 [[image:image-20230808163612-7.png||height="549" width="952"]]
408
409 [[image:image-20230808163035-5.png]]
410
411 [[image:image-20230808163049-6.png||height="544" width="926"]]
412
413 === 3.4.2 For Device already registered in DataCake before shipped ===
414
415 ==== 3.4.2.1 Scan QR Code to get the device info ====
416
417 Users can use their phones or computers to scan QR codes to obtain device data information.
418
419 [[image:image-20230808170051-8.png||height="255" width="259"]]
420
421 [[image:image-20230808170548-9.png]]
422
423 ==== 3.4.2.2 Claim Device to User Account ====
424
425 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
426
427 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
428
429 **Step1: Add a device**
430
431 [[image:image-20240129170024-1.png||height="330" width="900"]]
432
433 **Step2: Choose your device type,please select dragino NB-IOT device**
434
435 [[image:image-20240129170216-2.png||height="534" width="643"]]
436
437 **Step3: Choose to create a new device**
438
439 [[image:image-20240129170539-3.png||height="459" width="646"]]
440
441 **Step4: Fill in the device ID of your NB device**
442
443 [[image:image-20240202111546-1.png||height="378" width="651"]]
444
445 **Step5: Please select your device plan according to your needs and complete the creation of the device**
446
447 [[image:image-20240129171236-6.png||height="450" width="648"]]
448
449 **Step6: Please add the decoder at the payload decoder of the device configuration.**
450
451 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
452
453 [[image:image-20240129172056-7.png||height="457" width="816"]]
454
455 [[image:image-20240129173116-9.png||height="499" width="814"]]
456
457 **Step7: Add the output of the decoder as a field**
458
459 [[image:image-20240129173541-10.png||height="592" width="968"]]
460
461 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
462
463 [[image:image-20240129174518-11.png||height="147" width="1042"]]
464
465 [[image:image-20240129174657-12.png||height="538" width="916"]]
466
467 [[image:image-20240129174840-13.png||height="536" width="750"]]
468
469 === 3.4.4 For device have not configured to connect to DataCake ===
470
471 (% class="lead" %)
472 Use AT command for connecting to DataCake
473
474 (% style="color:blue" %)**AT+PRO=2,0**
475
476 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
477
478 == 3.5 Node-Red (via MQTT) ==
479
480 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
481
482 Take S31-NB UDP protocol as an example.
483
484 Dragino provides input flow examples for the sensors.
485
486 User can download the required JSON file through Dragino Node-RED input flow template.
487
488 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
489
490 We can directly import the template.
491
492 The templates for S31-NB and NB95S31B are the same.
493
494 [[image:image-20230809173127-4.png]]
495
496 Please select the NB95S31B template.
497
498 [[image:image-20230809173310-5.png||height="558" width="926"]]
499
500 [[image:image-20230809173438-6.png]]
501
502 [[image:image-20230809173800-7.png]]
503
504 Successfully imported template.
505
506 [[image:image-20230809173835-8.png||height="515" width="860"]]
507
508 Users can set UDP port.
509
510 [[image:image-20230809174053-9.png]]
511
512 === 3.5.2 Simulate Connection ===
513
514 We have completed the configuration of UDP. We can try sending packets to node red.
515
516 [[image:image-20230810083934-1.png]]
517
518 [[image:image-20230810084048-2.png||height="535" width="1052"]]
519
520 === 3.5.3 Configure NB-IoT Sensors ===
521
522 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
523 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
524 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
525 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
526 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
527 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
528
529 == 3.6 ThingsBoard.Cloud (via MQTT) ==
530
531 === 3.6.1 Configure ThingsBoard ===
532
533 ==== 3.6.1.1 Create Device ====
534
535 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
536
537 [[image:image-20230802112413-32.png||height="583" width="1066"]]
538
539 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
540
541 (% style="color:blue" %)**Uplink Converter**
542
543 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
544
545 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
546
547 [[image:image-20230802112413-33.png||height="597" width="1061"]]
548
549 (% style="color:blue" %)**Downlink Converter**
550
551 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
552
553 [[image:image-20230802112413-34.png||height="598" width="1063"]]
554
555 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
556
557 ==== 3.6.1.3 MQTT Integration Setup ====
558
559 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
560
561 [[image:image-20230802112413-35.png||height="597" width="1062"]]
562
563 * The next steps is to add the recently created uplink and downlink converters;
564
565 [[image:image-20230802112413-36.png||height="598" width="1062"]]
566
567 [[image:image-20230802112413-37.png||height="598" width="1064"]]
568
569 (% style="color:blue" %)**Add a topic filter:**
570
571 Consistent with the theme of the node setting.
572
573 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
574
575 [[image:image-20230802112413-38.png||height="598" width="1064"]]
576
577 === 3.6.2 Simulate with MQTT.fx ===
578
579 [[image:image-20230802112413-39.png]]
580
581 [[image:image-20230802112413-40.png||height="525" width="980"]]
582
583 === 3.6.3 Configure NB-IoT Sensor ===
584
585 (% style="color:blue" %)**AT Commands**
586
587 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
588
589 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
590
591 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
592
593 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
594
595 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
596
597 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
598
599 Test Uplink by click the button for 1 second
600
601 [[image:image-20230802112413-41.png||height="496" width="828"]]
602
603 [[image:image-20230802112413-42.png]]
604
605 [[image:image-20230802112413-43.png||height="407" width="825"]]
606
607 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
608
609 === 3.7.1 Create device & Get Credentials ===
610
611 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
612
613 [[image:image-20230802112413-44.png]]
614
615 [[image:image-20230802112413-45.png]]
616
617 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
618
619 [[image:image-20230802112413-46.png]]
620
621 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
622
623 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
624
625 * (% style="color:#037691" %)**Profile Name: “Any name”**
626
627 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
628
629 * (% style="color:#037691" %)**Broker Port: 8883**
630
631 * (% style="color:#037691" %)**Client ID: “Any value”**
632
633 (% style="color:blue" %)**On the section User credentials, set the following information:**
634
635 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
636
637 * (% style="color:#037691" %)**Password: “Your device token”**
638
639 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
640
641 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
642
643 (% style="color:blue" %)**AT command:**
644
645 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
646
647 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
648
649 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
650
651 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
652
653 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
654
655 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
656
657 === 3.7.2 Simulate with MQTT.fx ===
658
659 [[image:image-20230802112413-52.png]]
660
661 [[image:image-20230808105300-2.png||height="553" width="1026"]]
662
663 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
664
665 [[image:image-20230808105217-1.png||height="556" width="1031"]]
666
667 [[image:image-20230808105329-3.png]]
668
669 === 3.7.3 tago data ===
670
671 [[image:image-20230802112413-50.png||height="242" width="1037"]]
672
673 [[image:image-20230802112413-51.png||height="184" width="696"]]
674
675 == 3.8 TCP Connection ==
676
677 (% style="color:blue" %)**AT command:**
678
679 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
680
681 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
682
683 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
684
685 (% style="color:blue" %)**Sensor Console Output when Uplink:**
686
687 [[image:image-20230807233631-1.png]]
688
689 (% style="color:blue" %)**See result in TCP Server:**
690
691 [[image:image-20230807233631-2.png]]
692
693 == 3.9 AWS Connection ==
694
695 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
696
697 = 4. MQTT/UDP/TCP downlink =
698
699 == 4.1 MQTT (via MQTT.fx) ==
700
701 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
702
703 **1.** Configure node MQTT connection (via MQTT.fx):
704
705 (% style="color:blue" %)**AT command:**
706
707 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
708
709 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
710
711 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
712
713 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
714
715 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
716
717 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
718
719 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
720
721 [[image:image-20240417180145-2.png||height="434" width="587"]][[ width="584">> width="584"]]
722
723 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
724
725 [[image:image-20240418144337-1.png||height="709" width="802"]]
726
727 **3. **The downlink command can be successfully sent only when the downlink port is open.
728
729 The downlink port is opened for about 3 seconds after uplink packets are sent.
730
731 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
732
733 [[image:image-20240418150435-3.png||height="582" width="659"]]
734
735 [[image:image-20240418150932-4.png||height="492" width="1061"]]
736
737 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
738
739 = 5. GPS positioning function =
740
741 === 1. Turn on GPS function ===
742
743 (% class="wikigeneratedid" %)
744 AT+GPS=1 or 0  ~/~/GPS function on or off
745
746
747 === 2.Extend the time to turn on GNSS ===
748
749 AT+GNSST=30  ~/~/GPS search for positioning information for 30 seconds
750
751
752 === 3.Get or set GPS positioning interval in units of hour ===
753
754 AT+GTDC=24  ~/~/The device will activate GPS positioning every 24 hours
755
756
757 = 5. FAQ =
758
759 == 5.1 What is the usage of Multi Sampling and One Uplink? ==
760
761 The NB series has the feature for Multi Sampling and one uplink. See one of them
762
763 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
764
765 User can use this feature for below purpose:
766
767 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
768 1. Give more sampling data points.
769 1. Increase reliable in transmission. For example. If user set
770 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
771 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
772 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
773 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
774
775 == 5.2 Why the uplink JSON format is not standard? ==
776
777 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
778
779 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
780
781 [[image:image-20240229233154-1.png]]
782
783 = 6. Trouble Shooting: =
784
785 == 6.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
786
787 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
788
789 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
790
791 [[image:image-20240207002003-1.png]]
792
793 If fail to attach network, it will shows signal 99. as below:
794
795 [[image:image-20240207002129-2.png]]
796
797 (% class="lead" %)
798 When see this issue, below are the checklist:
799
800 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
801 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
802 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
803 * Check if the device is attached to Carrier network but reject. (need to check with operator).
804 * Check if the antenna is connected firmly.
805
806 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
807
808
809 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.4 Why sometime the AT Command is slow in reponse?(%%) ==
810
811 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
812
813 [[image:image-20240226111928-1.png]]
814
815 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.5 What is the Downlink Command by the NB device?(%%) ==
816
817 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
818 === UDP: ===
819
820 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
821 Its downlink command is the same as the AT command, but brackets are required.
822 Example:
823
824 {AT+TDC=300}
825
826 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
827 === MQTT: ===
828
829 Json:
830
831 The Json format in MQTT mode needs to be configured with all commands.
832 If you have configurations that need to be changed, please change them in the template below.
833 Template:
834
835 {
836 "AT+SERVADDR":"119.91.62.30,1882",
837 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
838 "AT+UNAME":"usenamedragino",
839 "AT+PWD":"passworddragino",
840 "AT+PUBTOPIC":"123",
841 "AT+SUBTOPIC":"321",
842 "AT+TDC":"7200",
843 "AT+INTMOD":"0",
844 "AT+APN":"NULL",
845 "AT+5VT":"0",
846 "AT+PRO":"3,5",
847 "AT+TR":"900",
848 "AT+NOUD":"0",
849 "AT+CSQTIME":"5",
850 "AT+DNSTIMER":"0",
851 "AT+TLSMOD":"0,0",
852 "AT+MQOS":"0",
853 "AT+TEMPALARM1":"0",
854 "AT+TEMPALARM2":"10",
855 "AT+TEMPALARM3":"0"
856 }
857
858 Hex:
859
860 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
861
862 The supported commands are consistent with LoRaWAN's hex commands.
863 Please refer to the following link to obtain the hex format:
864
865 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
866
867
868
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0