Version 129.2 by Xiaoling on 2024/09/14 10:53

Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
12
13
14 = 2. Attach Network =
15
16 == 2.1 General Configure to attach network ==
17
18 To attache end nodes to NB-IoT or LTE-M Network, You need to:
19
20 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
21 1. Power Off End Node ( See below for the power off/on position)
22 1. Insert the SIM card to Sensor. ( See below for direction)
23 1. Power On End Node
24 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
25
26 [[image:image-20240602220856-1.png]]
27
28
29 放一张如何插卡图片。
30
31
32 After doing above, the end nodes should be able to attach to NB-IoT network .
33
34 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
35
36 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
37
38 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
39
40 Make sure you use a the NB-IoT or LTE-M SIM card.
41
42 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
43 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
44 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
45 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
46
47 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
48 )))|(% style="width:351px" %)(((
49 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
50 )))|(% style="width:120px" %)UK: Band20
51 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
52 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
53
54 == 2.2 Speed Up Network Attach time ==
55
56 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
57
58 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
59
60 Attache to 1NCE card for Australia use:
61
62 * AT+COPS=1,2,"50501",8
63 * AT+QCFG="band",0,0x8000000,0x8000000,1
64
65 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
66
67 AT+QENG="servingcell"
68 +QENG: "servingcell","NOCONN","eMTC","FD
69 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
70
71
72 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
73
74 === **1.Configure Frequency Band** ===
75
76 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
77
78 <GSM_bandval>:
79
80 0 No change 
81 0x1 EGSM900
82 0x2 DCS1800
83 0x4 GSM850 
84 0x8 PCS1900 
85 0xF All of the supported bands above
86
87 <eMTC_bandval>:
88
89 0 No change 
90 0x1  LTE B1
91 0x2  LTE B2 
92 0x4  LTE B3 
93 0x8  LTE B4 
94 0x10  LTE B5 
95 0x80  LTE B8 
96 0x800  LTE B12 
97 0x1000  LTE B13 
98 0x20000  LTE B18 
99 0x40000  LTE B19 
100 0x80000  LTE B20 
101 0x1000000  LTE B25 
102 0x2000000  LTE B26 
103 0x4000000  LTE B27 
104 0x8000000  LTE B28 
105 0x40000000  LTE B31 
106 0x20000000000000000  LTE B66 
107 0x800000000000000000  LTE B72 
108 0x1000000000000000000  LTE B73 
109 0x1000000000000000000000  LTE B85
110
111 <NB-IoT_bandval>:
112
113 0 No change 
114 0x1  LTE B1
115 0x2  LTE B2 
116 0x4  LTE B3 
117 0x8  LTE B4 
118 0x10  LTE B5 
119 0x80  LTE B8 
120 0x800  LTE B12 
121 0x1000  LTE B13 
122 0x20000  LTE B18 
123 0x40000  LTE B19 
124 0x80000  LTE B20 
125 0x1000000  LTE B25 
126 0x8000000  LTE B28 
127 0x40000000  LTE B31 
128 0x20000000000000000  LTE B66
129
130 0x400000000000000000  LTE B71
131 0x800000000000000000  LTE B72 
132 0x1000000000000000000  LTE B73 
133 0x1000000000000000000000  LTE B85
134
135 For example, setting the LTE-M network frequency band to 3.
136
137 AT+QCFG="band",0xF,0x4,0,1
138
139 When searching for all bands, the value of this command is set to:
140
141 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
142
143
144 === **2.Configure search network sequence** ===
145
146 AT+QCFG="nwscanseq",<scanseq>,1
147
148 <scanseq>:
149
150 00 Automatic (eMTC → NB-IoT → GSM) 
151 01 GSM 
152 02 eMTC 
153 03 NB-IoT
154
155 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
156
157 === **3.Configure Network Category to be Searched for under LTE RAT** ===
158
159 AT+QCFG="iotopmode",mode,1
160
161 0 eMTC 
162 1 NB-IoT 
163 2 eMTC and NB-IoT
164
165 === **4.AT command to set frequency band and network category** ===
166
167 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
168
169 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
170
171 **Example :**
172
173 Taking the use of 1nce cards in **the United States** as an example.
174
175 AT+APN=iot.1nce.net  ~/~/set APN
176
177 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
178
179 AT+IOTMOD=0  ~/~/ Set  eMTC Network
180
181 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
182
183
184 = 3. Configure to connect to different servers =
185
186 == 3.1 General UDP Connection ==
187
188 The NB-IoT Sensor can send packet to server use UDP protocol.
189
190
191 === 3.1.1 Simulate UDP Connection by PC tool ===
192
193
194 We can use PC tool to simulate UDP connection to make sure server works ok.
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
197
198
199 === 3.1.2 Configure NB-IoT Sensor ===
200
201 ==== 3.1.2.1 AT Commands ====
202
203
204 (% style="color:blue" %)**AT Commands:**
205
206 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
207
208 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
209
210 [[image:image-20240819102802-1.png]]
211
212
213 ==== 3.1.2.2 Uplink Example ====
214
215
216 [[image:image-20240819105418-8.png||height="611" width="1287"]]
217
218
219 == 3.2 General COAP Connection ==
220
221
222 The NB-IoT Sensor can send packet to server use COAP protocol.
223
224 Below are the commands.
225
226 (% style="color:blue" %)**AT Commands:**
227
228 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
229
230 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
231
232 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
233 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
234
235 [[image:image-20240819103212-2.png]]
236
237
238 === 3.2.1 Uplink Example ===
239
240
241 [[image:image-20240819103909-4.png||height="453" width="955"]]
242
243
244 == 3.2 General MQTT Connection ==
245
246
247 The NB-IoT Sensor can send packet to server use MQTT protocol.
248
249 Below are the commands.
250
251 (% style="color:blue" %)**AT Commands:**
252
253 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
254
255 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
256
257 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
258
259 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
260
261 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
262
263 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
264
265 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
266
267 [[image:image-20240819105003-7.png||height="613" width="458"]]
268
269
270 [[image:image-20240819104942-6.png||height="702" width="974"]]
271
272 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
273
274
275 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
276
277 === 3.3.1 Get MQTT Credentials ===
278
279
280 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
281
282 [[image:image-20240819173602-1.png||height="401" width="743"]]
283
284 [[image:image-20240819173706-3.png||height="595" width="597"]]
285
286
287 === 3.3.2 Simulate with MQTT.fx ===
288
289 ==== 3.3.2.1 Establish MQTT Connection ====
290
291
292 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
293
294 [[image:image-20240819173826-4.png||height="534" width="734"]]
295
296 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
297
298 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
299
300 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
301
302 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
303
304 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
305
306
307 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
308
309
310 [[image:image-20240819174033-5.png]]
311
312 [[image:image-20240819174209-6.png]]
313
314 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
315
316 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
317
318 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
319
320 Where 63 and 67 are the value to be published to field1 & field2.
321
322 (% style="color:blue" %)**Result: **
323
324 [[image:image-20240819174314-7.png||height="469" width="785"]]
325
326
327 === 3.3.3 Configure NB-IoT Sensor for connection ===
328
329 ==== 3.3.3.1 AT Commands: ====
330
331
332 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
333
334 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
335
336 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
337
338 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
339
340 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
341
342 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
343
344 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
345
346
347 ==== 3.3.3.2 Uplink Examples ====
348
349
350 [[image:image-20240819174540-8.png]]
351
352 For SE01-NB
353
354 For DDS20-NB
355
356 For DDS45-NB
357
358 For DDS75-NB
359
360 For NMDS120-NB
361
362 For SPH01-NB
363
364 For NLM01-NB
365
366 For NMDS200-NB
367
368 For CPN01-NB
369
370 For DS03A-NB
371
372 For SN50V3-NB
373
374
375 ==== 3.3.3.3 Map fields to sensor value ====
376
377
378 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
379
380 [[image:image-20240819174610-9.png]]
381
382 [[image:image-20240819174618-10.png]]
383
384 Below is the NB-IoT Product Table show the mapping.
385
386 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
387 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:139px" %)Field4|(% style="background-color:#4f81bd; color:white; width:141px" %)Field5|(% style="background-color:#4f81bd; color:white; width:142px" %)Field6|(% style="background-color:#4f81bd; color:white; width:151px" %)Field7|(% style="background-color:#4f81bd; color:white; width:137px" %)Field8|(% style="background-color:#4f81bd; color:white; width:69px" %)Field9|(% style="background-color:#4f81bd; color:white; width:65px" %)Field10
388 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
389 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:139px" %)dielectric_constant|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
390 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
391 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
392 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
393 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
394 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
396 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:139px" %)calc flag|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
398 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:139px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:141px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:142px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:137px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:69px" %)Battery|(% colspan="1" rowspan="1" style="width:65px" %)RSSI
399 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:142px" %)adc0|(% colspan="1" rowspan="1" style="width:151px" %)Temperature |(% colspan="1" rowspan="1" style="width:137px" %)Humidity|(% colspan="1" rowspan="1" style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
400 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc0|(% colspan="1" style="width:151px" %)distance|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
401 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)adc0|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc1|(% colspan="1" style="width:151px" %)Temperature|(% colspan="1" style="width:137px" %)Humidity|(% colspan="1" style="width:69px" %)adc4|(% colspan="1" style="width:65px" %)
402 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)DS18B20 Temp2|(% colspan="1" style="width:137px" %)DS18B20 Temp3|(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
403 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)Weight|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
404 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)count|(% colspan="1" style="width:141px" %) |(% colspan="1" style="width:142px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
405
406 == 3.4 [[Datacake>>https://datacake.co/]] ==
407
408 (% class="wikigeneratedid" %)
409 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
410
411 (% class="wikigeneratedid" %)
412 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
413
414 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
415
416 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
417
418
419 === 3.4.1 For device Already has template ===
420
421 ==== 3.4.1.1 Create Device ====
422
423
424 (% style="color:blue" %)**Add Device**(%%) in DataCake.
425
426 [[image:image-20240820110003-1.png]]
427
428 [[image:image-20240820110017-2.png]]
429
430 (% style="color:blue" %)**Choose the correct model**(%%) from template.
431
432 [[image:image-20240820110031-3.png]]
433
434 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
435
436 [[image:image-20240820110048-4.png]]
437
438 [[image:image-20240820110103-5.png]]
439
440 [[image:image-20240820110114-6.png]]
441
442
443 === 3.4.2 For Device already registered in DataCake before shipped ===
444
445 ==== 3.4.2.1 Scan QR Code to get the device info ====
446
447
448 Users can use their phones or computers to scan QR codes to obtain device data information.
449
450 [[image:image-20240820110129-7.png]]
451
452 [[image:image-20240820110218-9.png]]
453
454
455 ==== 3.4.2.2 Claim Device to User Account ====
456
457 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
458
459
460 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
461
462
463 **Step1: Add a device**
464
465 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
466
467
468 **Step2: Choose your device type,please select dragino NB-IOT device**
469
470 [[image:image-20240820110247-11.png]]
471
472
473 **Step3: Choose to create a new device**
474
475 [[image:image-20240820111016-12.png]]
476
477
478 **Step4: Fill in the device ID of your NB device**
479
480 [[image:image-20240820111101-13.png]]
481
482
483 **Step5: Please select your device plan according to your needs and complete the creation of the device**
484
485 [[image:image-20240820111113-14.png]]
486
487
488 **Step6: Please add the decoder at the payload decoder of the device configuration.**
489
490 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
491
492 [[image:image-20240820111236-15.png]]
493
494 [[image:image-20240820111248-16.png]]
495
496
497 **Step7: Add the output of the decoder as a field**
498
499 [[image:image-20240820111259-17.png]]
500
501
502 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
503
504 [[image:image-20240820111312-18.png]]
505
506 [[image:image-20240820111322-19.png]]
507
508 [[image:image-20240820111333-20.png]]
509
510
511 === 3.4.4 For device have not configured to connect to DataCake ===
512
513
514 (% class="lead" %)
515 Use AT command for connecting to DataCake
516
517 (% style="color:blue" %)**AT+PRO=2,0**
518
519 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
520
521
522 == 3.5 Node-Red (via MQTT) ==
523
524 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
525
526
527 Take S31-NB UDP protocol as an example.
528
529 Dragino provides input flow examples for the sensors.
530
531 User can download the required JSON file through Dragino Node-RED input flow template.
532
533 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
534
535 We can directly import the template.
536
537 The templates for S31-NB and NB95S31B are the same.
538
539 [[image:image-20240820111353-21.png]]
540
541 Please select the NB95S31B template.
542
543 [[image:image-20240820111405-22.png]]
544
545 [[image:image-20240820111418-23.png]]
546
547 [[image:image-20240820111427-24.png]]
548
549 Successfully imported template.
550
551 [[image:image-20240820111438-25.png]]
552
553 Users can set UDP port.
554
555 [[image:image-20240820111448-26.png]]
556
557
558 === 3.5.2 Simulate Connection ===
559
560
561 We have completed the configuration of UDP. We can try sending packets to node red.
562
563 [[image:image-20240820111504-27.png]]
564
565 [[image:image-20240820111515-28.png]]
566
567
568 === 3.5.3 Configure NB-IoT Sensors ===
569
570
571 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
572 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
573 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
574 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
575 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
576 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
577
578
579 == 3.6 ThingsBoard.Cloud (via MQTT) ==
580
581 === 3.6.1 Configure ThingsBoard ===
582
583 ==== 3.6.1.1 Create Device ====
584
585
586 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
587
588 [[image:image-20240820112210-29.png]]
589
590
591 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
592
593
594 (% style="color:blue" %)**Uplink Converter**
595
596 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
597
598 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
599
600 [[image:image-20240820112222-30.png]]
601
602 (% style="color:blue" %)**Downlink Converter**
603
604 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
605
606 [[image:image-20240820112236-31.png]]
607
608 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
609
610
611 ==== 3.6.1.3 MQTT Integration Setup ====
612
613
614 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
615
616 [[image:image-20240820112247-32.png]]
617
618 * The next steps is to add the recently created uplink and downlink converters;
619
620 [[image:image-20240820112302-33.png]]
621
622 [[image:image-20240820112316-34.png]]
623
624 (% style="color:blue" %)**Add a topic filter:**
625
626 Consistent with the theme of the node setting.
627
628 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
629
630 [[image:image-20240820112330-35.png]]
631
632
633 === 3.6.2 Simulate with MQTT.fx ===
634
635 [[image:image-20240820112340-36.png]]
636
637 [[image:image-20240820112351-37.png]]
638
639
640 === 3.6.3 Configure NB-IoT Sensor ===
641
642
643 (% style="color:blue" %)**AT Commands**
644
645 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
646
647 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
648
649 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
650
651 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
652
653 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
654
655 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
656
657 Test Uplink by click the button for 1 second
658
659 [[image:image-20240820112404-38.png]]
660
661 [[image:image-20240820112416-39.png]]
662
663 [[image:image-20240820112426-40.png]]
664
665
666 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
667
668 === 3.7.1 Create device & Get Credentials ===
669
670
671 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
672
673 [[image:image-20240820112516-41.png]]
674
675 [[image:image-20240820112526-42.png]]
676
677 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
678
679 [[image:image-20240820112539-43.png]]
680
681 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
682
683 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
684
685 * (% style="color:#037691" %)**Profile Name: “Any name”**
686
687 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
688
689 * (% style="color:#037691" %)**Broker Port: 8883**
690
691 * (% style="color:#037691" %)**Client ID: “Any value”**
692
693 (% style="color:blue" %)**On the section User credentials, set the following information:**
694
695 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
696
697 * (% style="color:#037691" %)**Password: “Your device token”**
698
699 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
700
701 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
702
703 (% style="color:blue" %)**AT command:**
704
705 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
706
707 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
708
709 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
710
711 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
712
713 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
714
715 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
716
717
718 === 3.7.2 Simulate with MQTT.fx ===
719
720
721 [[image:image-20240820112552-44.png]]
722
723 [[image:image-20240820112604-45.png]]
724
725 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
726
727 [[image:image-20240820112615-46.png]]
728
729 [[image:image-20240820112626-47.png]]
730
731
732 === 3.7.3 tago data ===
733
734
735 [[image:image-20240820112637-48.png]]
736
737 [[image:image-20240820112647-49.png]]
738
739
740 == 3.8 TCP Connection ==
741
742
743 (% style="color:blue" %)**AT command:**
744
745 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
746
747 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
748
749 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
750
751 (% style="color:blue" %)**Sensor Console Output when Uplink:**
752
753 [[image:image-20240820112704-50.png]]
754
755 (% style="color:blue" %)**See result in TCP Server:**
756
757 [[image:image-20240820112716-51.png]]
758
759
760 == 3.9 AWS Connection ==
761
762
763 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
764
765
766 = 4. COAP/UDP/MQTT/TCP downlink =
767
768 == 4.1 MQTT (via MQTT.fx) ==
769
770
771 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
772
773 **1.** Configure node MQTT connection (via MQTT.fx):
774
775 (% style="color:blue" %)**AT command:**
776
777 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
778
779 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
780
781 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
782
783 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
784
785 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
786
787 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
788
789 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
790
791 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
792
793
794 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
795
796 [[image:image-20240820112813-54.png]]
797
798
799 **3. **The downlink command can be successfully sent only when the downlink port is open.
800
801 The downlink port is opened for about 3 seconds after uplink packets are sent.
802
803 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
804
805 [[image:image-20240820112824-55.png]]
806
807 [[image:image-20240820112835-56.png]]
808
809 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
810
811
812 == 4.2 UDP (via Thingseye) ==
813
814
815 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
816
817 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
818
819 [[image:image-20240820141843-2.png||height="546" width="821"]]
820
821 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
822
823 [[image:image-20240820143316-3.png||height="555" width="1170"]]
824
825 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
826
827 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
828
829 [[image:image-20240820143820-4.png||height="554" width="1168"]]
830
831 After the command is successfully added, the platform will send the command down on the node's next uplink.
832
833 [[image:image-20240820144913-6.png||height="585" width="1232"]]
834
835 [[image:image-20240820145133-7.png||height="582" width="1227"]]
836
837 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
838
839 [[image:image-20240820145309-8.png]]
840
841
842 = 5. GPS positioning function =
843
844 == 1. Turn on GPS function ==
845
846
847 (% class="wikigeneratedid" %)
848 AT+GPS=1 or 0  ~/~/ GPS function on or off
849
850
851 == 2. Extend the time to turn on GNSS ==
852
853
854 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
855
856
857 == 3. Get or set GPS positioning interval in units of hour ==
858
859
860 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
861
862
863 = 6. FAQ =
864
865 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
866
867
868 The NB series has the feature for Multi Sampling and one uplink. See one of them
869
870 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
871
872 User can use this feature for below purpose:
873
874 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
875 1. Give more sampling data points.
876 1. Increase reliable in transmission. For example. If user set
877 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
878 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
879 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
880 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
881
882
883 == 6.2 Why the uplink JSON format is not standard? ==
884
885
886 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
887
888 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
889
890 [[image:image-20240820112848-57.png]]
891
892
893 = 7. Trouble Shooting: =
894
895 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
896
897
898 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
899
900 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
901
902 [[image:image-20240820112859-58.png]]
903
904 If fail to attach network, it will shows signal 99. as below:
905
906 [[image:image-20240820112908-59.png]]
907
908 (% class="lead" %)
909 When see this issue, below are the checklist:
910
911 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
912 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
913 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
914 * Check if the device is attached to Carrier network but reject. (need to check with operator).
915 * Check if the antenna is connected firmly.
916
917 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
918
919
920 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
921
922
923 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
924
925 [[image:image-20240820113015-60.png]]
926
927
928 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
929
930 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
931 === UDP: ===
932
933 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
934 Its downlink command is the same as the AT command, but brackets are required.
935 Example:
936
937 {AT+TDC=300}
938
939
940 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
941 === MQTT: ===
942
943 Json:
944
945 The Json format in MQTT mode needs to be configured with all commands.
946 If you have configurations that need to be changed, please change them in the template below.
947 Template:
948
949 {
950 "AT+SERVADDR":"119.91.62.30,1882",
951 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
952 "AT+UNAME":"usenamedragino",
953 "AT+PWD":"passworddragino",
954 "AT+PUBTOPIC":"123",
955 "AT+SUBTOPIC":"321",
956 "AT+TDC":"7200",
957 "AT+INTMOD":"0",
958 "AT+APN":"NULL",
959 "AT+5VT":"0",
960 "AT+PRO":"3,5",
961 "AT+TR":"900",
962 "AT+NOUD":"0",
963 "AT+CSQTIME":"5",
964 "AT+DNSTIMER":"0",
965 "AT+TLSMOD":"0,0",
966 "AT+MQOS":"0",
967 "AT+TEMPALARM1":"0",
968 "AT+TEMPALARM2":"10",
969 "AT+TEMPALARM3":"0"
970 }
971
972 Hex:
973
974 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
975
976 The supported commands are consistent with LoRaWAN's hex commands.
977 Please refer to the following link to obtain the hex format:
978
979 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
980
981
982 == 7.4 What if the signal is good but the domain name resolution fails? ==
983
984
985 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
986
987 [[image:image-20240827150705-6.png||height="489" width="687"]]
988
989 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
990
991 * Set the DNS
992
993 (% style="color:blue" %)**AT Command: AT+GDNS**
994
995 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
996
997 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
998
999 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1000
1001 Example:
1002
1003 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
1004
1005
1006 == 7.5 GPS debugging ==
1007
1008
1009 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1010
1011 [[image:image-20240903104250-9.png||height="275" width="614"]]
1012
1013
1014 [[image:image-20240903104431-10.png||height="291" width="621"]]
1015
1016
1017 === 7.5.1 GPS commands ===
1018
1019
1020 The following are three related AT commands that introduce GPS functions.
1021
1022 * **Turn on/off GPS**
1023
1024 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1025
1026 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1027
1028 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1029
1030 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1031
1032 Format: Command Code (0x11) followed by 1 byte.
1033
1034 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1035
1036 * **Set GNSS open time**
1037
1038 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1039
1040 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1041
1042 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1043
1044 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1045
1046 Format: Command Code (0x10) followed by 2 bytes.
1047
1048 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1049
1050 * **Set GPS positioning interval**
1051
1052 Feature: Set GPS positioning interval (unit: hour).
1053
1054 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1055
1056 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1057
1058 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1059
1060 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1061
1062 Format: Command Code (0x12) followed by 3 bytes.
1063
1064 Example: 24 hours:  24(D)=0x18(H)
1065
1066 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1067
1068
1069 === 7.5.2 GPS workflow ===
1070
1071
1072 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1073
1074 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1075
1076 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1077
1078 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1079
1080 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1081
1082 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1083
1084 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1085
1086
1087 === 7.5.3 GPS debugging methods ===
1088
1089
1090 In summary, we can deduce the methods of debugging GPS:
1091
1092 * **Check whether the GPS function is enabled.**
1093
1094 [[image:image-20240903102327-5.png||height="271" width="529"]]
1095
1096 * **Check whether the GPS antenna is loose**.
1097
1098 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1099
1100 [[image:image-20240903094214-1.png||height="340" width="461"]]
1101
1102 * **Use the AT+GNSST command to extend the positioning time.**
1103
1104 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1105
1106 If the location fails, users can extend the location time.
1107
1108 [[image:image-20240903102641-8.png||height="303" width="600"]]
1109
1110
1111
1112
1113