Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
12
13
14 = 2. Attach Network =
15
16 == 2.1 General Configure to attach network ==
17
18 To attache end nodes to NB-IoT or LTE-M Network, You need to:
19
20 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
21 1. Power Off End Node ( See below for the power off/on position)
22 1. Insert the SIM card to Sensor. ( See below for direction)
23 1. Power On End Node
24 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
25
26 [[image:image-20240602220856-1.png]]
27
28
29 放一张如何插卡图片。
30
31
32 After doing above, the end nodes should be able to attach to NB-IoT network .
33
34 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
35
36 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
37
38 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
39
40 Make sure you use a the NB-IoT or LTE-M SIM card.
41
42 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
43 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
44 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
45 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
46
47 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
48 )))|(% style="width:351px" %)(((
49 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
50 )))|(% style="width:120px" %)UK: Band20
51 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
52 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
53
54 == 2.2 Speed Up Network Attach time ==
55
56 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
57
58 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
59
60 Attache to 1NCE card for Australia use:
61
62 * AT+COPS=1,2,"50501",8
63 * AT+QCFG="band",0,0x8000000,0x8000000,1
64
65 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
66
67 AT+QENG="servingcell"
68 +QENG: "servingcell","NOCONN","eMTC","FD
69 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
70
71
72 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
73
74 **1.Configure Frequency Band**
75
76 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
77
78 <GSM_bandval>:
79
80 0 No change 
81 0x1 EGSM900
82 0x2 DCS1800
83 0x4 GSM850 
84 0x8 PCS1900 
85 0xF All of the supported bands above
86
87 <eMTC_bandval>:
88
89 0 No change 
90 0x1  LTE B1
91 0x2  LTE B2 
92 0x4  LTE B3 
93 0x8  LTE B4 
94 0x10  LTE B5 
95 0x80  LTE B8 
96 0x800  LTE B12 
97 0x1000  LTE B13 
98 0x20000  LTE B18 
99 0x40000  LTE B19 
100 0x80000  LTE B20 
101 0x1000000  LTE B25 
102 0x2000000  LTE B26 
103 0x4000000  LTE B27 
104 0x8000000  LTE B28 
105 0x40000000  LTE B31 
106 0x20000000000000000  LTE B66 
107 0x800000000000000000  LTE B72 
108 0x1000000000000000000  LTE B73 
109 0x1000000000000000000000  LTE B85
110
111 <NB-IoT_bandval>:
112
113 0 No change 
114 0x1  LTE B1
115 0x2  LTE B2 
116 0x4  LTE B3 
117 0x8  LTE B4 
118 0x10  LTE B5 
119 0x80  LTE B8 
120 0x800  LTE B12 
121 0x1000  LTE B13 
122 0x20000  LTE B18 
123 0x40000  LTE B19 
124 0x80000  LTE B20 
125 0x1000000  LTE B25 
126 0x8000000  LTE B28 
127 0x40000000  LTE B31 
128 0x20000000000000000  LTE B66
129
130 0x400000000000000000  LTE B71
131 0x800000000000000000  LTE B72 
132 0x1000000000000000000  LTE B73 
133 0x1000000000000000000000  LTE B85
134
135 For example, setting the LTE-M network frequency band to 3.
136
137 AT+QCFG="band",0xF,0x4,0,1
138
139 When searching for all bands, the value of this command is set to:
140
141 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
142
143
144 **2.Configure search network sequence**
145
146 AT+QCFG="nwscanseq",<scanseq>,1
147
148 <scanseq>:
149
150 00 Automatic (eMTC → NB-IoT → GSM) 
151 01 GSM 
152 02 eMTC 
153 03 NB-IoT
154
155 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
156
157 **3.Configure Network Category to be Searched for under LTE RAT**
158
159 AT+QCFG="iotopmode",mode,1
160
161 0 eMTC 
162 1 NB-IoT 
163 2 eMTC and NB-IoT
164
165
166 = 3. Configure to connect to different servers =
167
168 == 3.1 General UDP Connection ==
169
170 The NB-IoT Sensor can send packet to server use UDP protocol.
171
172 === 3.1.1 Simulate UDP Connection by PC tool ===
173
174 We can use PC tool to simulate UDP connection to make sure server works ok.
175
176 [[image:image-20230802112413-1.png||height="468" width="1024"]]
177
178 === 3.1.2 Configure NB-IoT Sensor ===
179
180 ==== 3.1.2.1 AT Commands ====
181
182 (% style="color:blue" %)**AT Commands:**
183
184 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
185
186 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/ Set UDP server address and port
187
188 [[image:image-20230802112413-2.png]]
189
190 ==== 3.1.2.2 Uplink Example ====
191
192 [[image:image-20230802112413-3.png]]
193
194 == 3.2 General COAP Connection ==
195
196 The NB-IoT Sensor can send packet to server use COAP protocol.
197
198 Below are the commands.
199
200 (% style="color:blue" %)**AT Commands:**
201
202 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
203
204 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
205
206 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
207 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
208
209 === 3.2.1 Uplink Example ===
210
211
212
213 == 3.2 General MQTT Connection ==
214
215 The NB-IoT Sensor can send packet to server use MQTT protocol.
216
217 Below are the commands.
218
219 (% style="color:blue" %)**AT Commands:**
220
221 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
222
223 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
224
225 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
226
227 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
228
229 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
230
231 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
232
233 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
234
235 [[image:image-20230802112413-4.png]]
236
237 [[image:image-20230802112413-5.png||height="530" width="987"]]
238
239 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
240
241 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
242
243 === 3.3.1 Get MQTT Credentials ===
244
245 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
246
247 [[image:image-20230802112413-6.png||height="336" width="925"]]
248
249 [[image:image-20230802112413-7.png]]
250
251 === 3.3.2 Simulate with MQTT.fx ===
252
253 ==== 3.3.2.1 Establish MQTT Connection ====
254
255 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
256
257 [[image:image-20230802112413-8.png]]
258
259 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
260
261 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
262
263 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
264
265 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
266
267 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
268
269 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
270
271 [[image:image-20230802112413-9.png]]
272
273 [[image:image-20230802112413-10.png]]
274
275 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
276
277 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
278
279 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
280
281 Where 63 and 67 are the value to be published to field1 & field2.
282
283 (% style="color:blue" %)**Result: **
284
285 [[image:image-20230802112413-11.png||height="539" width="901"]]
286
287 === 3.3.3 Configure NB-IoT Sensor for connection ===
288
289 ==== 3.3.3.1 AT Commands: ====
290
291 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
292
293 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
294
295 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
296
297 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
298
299 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
300
301 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
302
303 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
304
305 ==== 3.3.3.2 Uplink Examples ====
306
307 [[image:image-20230816201942-1.png]]
308
309 For SE01-NB
310
311 For DDS20-NB
312
313 For DDS45-NB
314
315 For DDS75-NB
316
317 For NMDS120-NB
318
319 For SPH01-NB
320
321 For NLM01-NB
322
323 For NMDS200-NB
324
325 For CPN01-NB
326
327 For DS03A-NB
328
329 For SN50V3-NB
330
331 ==== 3.3.3.3 Map fields to sensor value ====
332
333 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
334
335 [[image:image-20230802112413-12.png||height="504" width="1011"]]
336
337 [[image:image-20230802112413-13.png||height="331" width="978"]]
338
339 Below is the NB-IoT Product Table show the mapping.
340
341 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
342 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
343 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
344 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
345 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
346 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
347 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
348 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
349 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
350 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
351 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
352 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
353 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
354 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
355 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
356 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
357 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
358 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
359 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
360
361 == 3.4 [[Datacake>>https://datacake.co/]] ==
362
363 (% class="wikigeneratedid" %)
364 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
365
366 (% class="wikigeneratedid" %)
367 As example for S31B-NB. there are two versions: **S31B-NB-1D and S31B-NB-GE.**
368
369 * (% style="color:blue" %)**S31B-NB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
370
371 * (% style="color:blue" %)**S31B-NB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
372
373 === 3.4.1 For device Already has template ===
374
375 ==== 3.4.1.1 Create Device ====
376
377 (% style="color:blue" %)**Add Device**(%%) in DataCake.
378
379 [[image:image-20230808162301-1.png||height="453" width="952"]]
380
381 [[image:image-20230808162342-2.png||height="541" width="952"]]
382
383 (% style="color:blue" %)**Choose the correct model**(%%) from template.
384
385 [[image:image-20230808162421-3.png]]
386
387 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
388
389 [[image:image-20230808163612-7.png||height="549" width="952"]]
390
391 [[image:image-20230808163035-5.png]]
392
393 [[image:image-20230808163049-6.png||height="544" width="926"]]
394
395 === 3.4.2 For Device already registered in DataCake before shipped ===
396
397 ==== 3.4.2.1 Scan QR Code to get the device info ====
398
399 Users can use their phones or computers to scan QR codes to obtain device data information.
400
401 [[image:image-20230808170051-8.png||height="255" width="259"]]
402
403 [[image:image-20230808170548-9.png]]
404
405 ==== 3.4.2.2 Claim Device to User Account ====
406
407 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
408
409 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
410
411 **Step1: Add a device**
412
413 [[image:image-20240129170024-1.png||height="330" width="900"]]
414
415 **Step2: Choose your device type,please select dragino NB-IOT device**
416
417 [[image:image-20240129170216-2.png||height="534" width="643"]]
418
419 **Step3: Choose to create a new device**
420
421 [[image:image-20240129170539-3.png||height="459" width="646"]]
422
423 **Step4: Fill in the device ID of your NB device**
424
425 [[image:image-20240202111546-1.png||height="378" width="651"]]
426
427 **Step5: Please select your device plan according to your needs and complete the creation of the device**
428
429 [[image:image-20240129171236-6.png||height="450" width="648"]]
430
431 **Step6: Please add the decoder at the payload decoder of the device configuration.**
432
433 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
434
435 [[image:image-20240129172056-7.png||height="457" width="816"]]
436
437 [[image:image-20240129173116-9.png||height="499" width="814"]]
438
439 **Step7: Add the output of the decoder as a field**
440
441 [[image:image-20240129173541-10.png||height="592" width="968"]]
442
443 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
444
445 [[image:image-20240129174518-11.png||height="147" width="1042"]]
446
447 [[image:image-20240129174657-12.png||height="538" width="916"]]
448
449 [[image:image-20240129174840-13.png||height="536" width="750"]]
450
451 === 3.4.4 For device have not configured to connect to DataCake ===
452
453 (% class="lead" %)
454 Use AT command for connecting to DataCake
455
456 (% style="color:blue" %)**AT+PRO=2,0**
457
458 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
459
460 == 3.5 Node-Red (via MQTT) ==
461
462 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
463
464 Take S31-NB UDP protocol as an example.
465
466 Dragino provides input flow examples for the sensors.
467
468 User can download the required JSON file through Dragino Node-RED input flow template.
469
470 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
471
472 We can directly import the template.
473
474 The templates for S31-NB and NB95S31B are the same.
475
476 [[image:image-20230809173127-4.png]]
477
478 Please select the NB95S31B template.
479
480 [[image:image-20230809173310-5.png||height="558" width="926"]]
481
482 [[image:image-20230809173438-6.png]]
483
484 [[image:image-20230809173800-7.png]]
485
486 Successfully imported template.
487
488 [[image:image-20230809173835-8.png||height="515" width="860"]]
489
490 Users can set UDP port.
491
492 [[image:image-20230809174053-9.png]]
493
494 === 3.5.2 Simulate Connection ===
495
496 We have completed the configuration of UDP. We can try sending packets to node red.
497
498 [[image:image-20230810083934-1.png]]
499
500 [[image:image-20230810084048-2.png||height="535" width="1052"]]
501
502 === 3.5.3 Configure NB-IoT Sensors ===
503
504 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
505 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
506 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
507 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
508 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
509 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
510
511 == 3.6 ThingsBoard.Cloud (via MQTT) ==
512
513 === 3.6.1 Configure ThingsBoard ===
514
515 ==== 3.6.1.1 Create Device ====
516
517 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
518
519 [[image:image-20230802112413-32.png||height="583" width="1066"]]
520
521 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
522
523 (% style="color:blue" %)**Uplink Converter**
524
525 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
526
527 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
528
529 [[image:image-20230802112413-33.png||height="597" width="1061"]]
530
531 (% style="color:blue" %)**Downlink Converter**
532
533 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
534
535 [[image:image-20230802112413-34.png||height="598" width="1063"]]
536
537 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
538
539 ==== 3.6.1.3 MQTT Integration Setup ====
540
541 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
542
543 [[image:image-20230802112413-35.png||height="597" width="1062"]]
544
545 * The next steps is to add the recently created uplink and downlink converters;
546
547 [[image:image-20230802112413-36.png||height="598" width="1062"]]
548
549 [[image:image-20230802112413-37.png||height="598" width="1064"]]
550
551 (% style="color:blue" %)**Add a topic filter:**
552
553 Consistent with the theme of the node setting.
554
555 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
556
557 [[image:image-20230802112413-38.png||height="598" width="1064"]]
558
559 === 3.6.2 Simulate with MQTT.fx ===
560
561 [[image:image-20230802112413-39.png]]
562
563 [[image:image-20230802112413-40.png||height="525" width="980"]]
564
565 === 3.6.3 Configure NB-IoT Sensor ===
566
567 (% style="color:blue" %)**AT Commands**
568
569 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
570
571 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
572
573 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
574
575 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
576
577 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
578
579 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
580
581 Test Uplink by click the button for 1 second
582
583 [[image:image-20230802112413-41.png||height="496" width="828"]]
584
585 [[image:image-20230802112413-42.png]]
586
587 [[image:image-20230802112413-43.png||height="407" width="825"]]
588
589 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
590
591 === 3.7.1 Create device & Get Credentials ===
592
593 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
594
595 [[image:image-20230802112413-44.png]]
596
597 [[image:image-20230802112413-45.png]]
598
599 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
600
601 [[image:image-20230802112413-46.png]]
602
603 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
604
605 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
606
607 * (% style="color:#037691" %)**Profile Name: “Any name”**
608
609 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
610
611 * (% style="color:#037691" %)**Broker Port: 8883**
612
613 * (% style="color:#037691" %)**Client ID: “Any value”**
614
615 (% style="color:blue" %)**On the section User credentials, set the following information:**
616
617 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
618
619 * (% style="color:#037691" %)**Password: “Your device token”**
620
621 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
622
623 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
624
625 (% style="color:blue" %)**AT command:**
626
627 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
628
629 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
630
631 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
632
633 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
634
635 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
636
637 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
638
639 === 3.7.2 Simulate with MQTT.fx ===
640
641 [[image:image-20230802112413-52.png]]
642
643 [[image:image-20230808105300-2.png||height="553" width="1026"]]
644
645 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
646
647 [[image:image-20230808105217-1.png||height="556" width="1031"]]
648
649 [[image:image-20230808105329-3.png]]
650
651 === 3.7.3 tago data ===
652
653 [[image:image-20230802112413-50.png||height="242" width="1037"]]
654
655 [[image:image-20230802112413-51.png||height="184" width="696"]]
656
657 == 3.8 TCP Connection ==
658
659 (% style="color:blue" %)**AT command:**
660
661 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
662
663 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
664
665 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
666
667 (% style="color:blue" %)**Sensor Console Output when Uplink:**
668
669 [[image:image-20230807233631-1.png]]
670
671 (% style="color:blue" %)**See result in TCP Server:**
672
673 [[image:image-20230807233631-2.png]]
674
675 == 3.9 AWS Connection ==
676
677 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
678
679 = 4. MQTT/UDP/TCP downlink =
680
681 == 4.1 MQTT (via MQTT.fx) ==
682
683 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
684
685 **1.** Configure node MQTT connection (via MQTT.fx):
686
687 (% style="color:blue" %)**AT command:**
688
689 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
690
691 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
692
693 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
694
695 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
696
697 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
698
699 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
700
701 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
702
703 [[image:image-20240417180145-2.png||height="434" width="587"]][[ width="584">> width="584"]]
704
705 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
706
707 [[image:image-20240418144337-1.png||height="709" width="802"]]
708
709 **3. **The downlink command can be successfully sent only when the downlink port is open.
710
711 The downlink port is opened for about 3 seconds after uplink packets are sent.
712
713 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
714
715 [[image:image-20240418150435-3.png||height="582" width="659"]]
716
717 [[image:image-20240418150932-4.png||height="492" width="1061"]]
718
719 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
720
721 = 5. GPS positioning function =
722
723 (% class="wikigeneratedid" id="H5.1WhatistheusageofMultiSamplingandOneUplink3F" %)
724 ~1. Turn on GPS function
725
726 (% class="wikigeneratedid" %)
727 AT+GPS=1 or 0  ~/~/GPS function on or off
728
729
730 2.Extend the time to turn on GNSS
731
732 AT+GNSST=30  ~/~/GPS search for positioning information for 30 seconds
733
734
735 3.Get or set GPS positioning interval in units of hour
736
737 AT+GTDC=24  ~/~/The device will activate GPS positioning every 24 hours
738
739
740 = 5. FAQ =
741
742 == 5.1 What is the usage of Multi Sampling and One Uplink? ==
743
744 The NB series has the feature for Multi Sampling and one uplink. See one of them
745
746 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
747
748 User can use this feature for below purpose:
749
750 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
751 1. Give more sampling data points.
752 1. Increase reliable in transmission. For example. If user set
753 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
754 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
755 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
756 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
757
758 == 5.2 Why the uplink JSON format is not standard? ==
759
760 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
761
762 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
763
764 [[image:image-20240229233154-1.png]]
765
766 = 6. Trouble Shooting: =
767
768 == 6.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
769
770 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
771
772 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
773
774 [[image:image-20240207002003-1.png]]
775
776 If fail to attach network, it will shows signal 99. as below:
777
778 [[image:image-20240207002129-2.png]]
779
780 (% class="lead" %)
781 When see this issue, below are the checklist:
782
783 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
784 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
785 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
786 * Check if the device is attached to Carrier network but reject. (need to check with operator).
787 * Check if the antenna is connected firmly.
788
789 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
790
791
792 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.4 Why sometime the AT Command is slow in reponse?(%%) ==
793
794 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
795
796 [[image:image-20240226111928-1.png]]
797
798 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.5 What is the Downlink Command by the NB device?(%%) ==
799
800 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
801 === UDP: ===
802
803 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
804 Its downlink command is the same as the AT command, but brackets are required.
805 Example:
806
807 {AT+TDC=300}
808
809 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
810 === MQTT: ===
811
812 Json:
813
814 The Json format in MQTT mode needs to be configured with all commands.
815 If you have configurations that need to be changed, please change them in the template below.
816 Template:
817
818 {
819 "AT+SERVADDR":"119.91.62.30,1882",
820 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
821 "AT+UNAME":"usenamedragino",
822 "AT+PWD":"passworddragino",
823 "AT+PUBTOPIC":"123",
824 "AT+SUBTOPIC":"321",
825 "AT+TDC":"7200",
826 "AT+INTMOD":"0",
827 "AT+APN":"NULL",
828 "AT+5VT":"0",
829 "AT+PRO":"3,5",
830 "AT+TR":"900",
831 "AT+NOUD":"0",
832 "AT+CSQTIME":"5",
833 "AT+DNSTIMER":"0",
834 "AT+TLSMOD":"0,0",
835 "AT+MQOS":"0",
836 "AT+TEMPALARM1":"0",
837 "AT+TEMPALARM2":"10",
838 "AT+TEMPALARM3":"0"
839 }
840
841 Hex:
842
843 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
844
845 The supported commands are consistent with LoRaWAN's hex commands.
846 Please refer to the following link to obtain the hex format:
847
848 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
849
850
851
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0