Version 129.3 by Xiaoling on 2024/09/14 10:54

Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11
12 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
13
14
15 = 2. Attach Network =
16
17 == 2.1 General Configure to attach network ==
18
19
20 To attache end nodes to NB-IoT or LTE-M Network, You need to:
21
22 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
23 1. Power Off End Node ( See below for the power off/on position)
24 1. Insert the SIM card to Sensor. ( See below for direction)
25 1. Power On End Node
26 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
27
28 [[image:image-20240602220856-1.png]]
29
30
31 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230808205045-1.png?width=438&height=293&rev=1.1||alt="image-20230808205045-1.png"]]
32
33
34 After doing above, the end nodes should be able to attach to NB-IoT network .
35
36 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
37
38 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
39
40 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
41
42 Make sure you use a the NB-IoT or LTE-M SIM card.
43
44 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
45 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
46 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
47 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
48
49 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
50 )))|(% style="width:351px" %)(((
51 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
52 )))|(% style="width:120px" %)UK: Band20
53 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
54 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
55
56 == 2.2 Speed Up Network Attach time ==
57
58 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
59
60 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
61
62 Attache to 1NCE card for Australia use:
63
64 * AT+COPS=1,2,"50501",8
65 * AT+QCFG="band",0,0x8000000,0x8000000,1
66
67 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
68
69 AT+QENG="servingcell"
70 +QENG: "servingcell","NOCONN","eMTC","FD
71 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
72
73
74 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
75
76 === **1.Configure Frequency Band** ===
77
78 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
79
80 <GSM_bandval>:
81
82 0 No change 
83 0x1 EGSM900
84 0x2 DCS1800
85 0x4 GSM850 
86 0x8 PCS1900 
87 0xF All of the supported bands above
88
89 <eMTC_bandval>:
90
91 0 No change 
92 0x1  LTE B1
93 0x2  LTE B2 
94 0x4  LTE B3 
95 0x8  LTE B4 
96 0x10  LTE B5 
97 0x80  LTE B8 
98 0x800  LTE B12 
99 0x1000  LTE B13 
100 0x20000  LTE B18 
101 0x40000  LTE B19 
102 0x80000  LTE B20 
103 0x1000000  LTE B25 
104 0x2000000  LTE B26 
105 0x4000000  LTE B27 
106 0x8000000  LTE B28 
107 0x40000000  LTE B31 
108 0x20000000000000000  LTE B66 
109 0x800000000000000000  LTE B72 
110 0x1000000000000000000  LTE B73 
111 0x1000000000000000000000  LTE B85
112
113 <NB-IoT_bandval>:
114
115 0 No change 
116 0x1  LTE B1
117 0x2  LTE B2 
118 0x4  LTE B3 
119 0x8  LTE B4 
120 0x10  LTE B5 
121 0x80  LTE B8 
122 0x800  LTE B12 
123 0x1000  LTE B13 
124 0x20000  LTE B18 
125 0x40000  LTE B19 
126 0x80000  LTE B20 
127 0x1000000  LTE B25 
128 0x8000000  LTE B28 
129 0x40000000  LTE B31 
130 0x20000000000000000  LTE B66
131
132 0x400000000000000000  LTE B71
133 0x800000000000000000  LTE B72 
134 0x1000000000000000000  LTE B73 
135 0x1000000000000000000000  LTE B85
136
137 For example, setting the LTE-M network frequency band to 3.
138
139 AT+QCFG="band",0xF,0x4,0,1
140
141 When searching for all bands, the value of this command is set to:
142
143 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
144
145
146 === **2.Configure search network sequence** ===
147
148 AT+QCFG="nwscanseq",<scanseq>,1
149
150 <scanseq>:
151
152 00 Automatic (eMTC → NB-IoT → GSM) 
153 01 GSM 
154 02 eMTC 
155 03 NB-IoT
156
157 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
158
159 === **3.Configure Network Category to be Searched for under LTE RAT** ===
160
161 AT+QCFG="iotopmode",mode,1
162
163 0 eMTC 
164 1 NB-IoT 
165 2 eMTC and NB-IoT
166
167 === **4.AT command to set frequency band and network category** ===
168
169 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
170
171 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
172
173 **Example :**
174
175 Taking the use of 1nce cards in **the United States** as an example.
176
177 AT+APN=iot.1nce.net  ~/~/set APN
178
179 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
180
181 AT+IOTMOD=0  ~/~/ Set  eMTC Network
182
183 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
184
185
186 = 3. Configure to connect to different servers =
187
188 == 3.1 General UDP Connection ==
189
190 The NB-IoT Sensor can send packet to server use UDP protocol.
191
192
193 === 3.1.1 Simulate UDP Connection by PC tool ===
194
195
196 We can use PC tool to simulate UDP connection to make sure server works ok.
197
198 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
199
200
201 === 3.1.2 Configure NB-IoT Sensor ===
202
203 ==== 3.1.2.1 AT Commands ====
204
205
206 (% style="color:blue" %)**AT Commands:**
207
208 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
209
210 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
211
212 [[image:image-20240819102802-1.png]]
213
214
215 ==== 3.1.2.2 Uplink Example ====
216
217
218 [[image:image-20240819105418-8.png||height="611" width="1287"]]
219
220
221 == 3.2 General COAP Connection ==
222
223
224 The NB-IoT Sensor can send packet to server use COAP protocol.
225
226 Below are the commands.
227
228 (% style="color:blue" %)**AT Commands:**
229
230 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
231
232 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
233
234 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
235 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
236
237 [[image:image-20240819103212-2.png]]
238
239
240 === 3.2.1 Uplink Example ===
241
242
243 [[image:image-20240819103909-4.png||height="453" width="955"]]
244
245
246 == 3.2 General MQTT Connection ==
247
248
249 The NB-IoT Sensor can send packet to server use MQTT protocol.
250
251 Below are the commands.
252
253 (% style="color:blue" %)**AT Commands:**
254
255 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
256
257 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
258
259 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
260
261 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
262
263 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
264
265 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
266
267 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
268
269 [[image:image-20240819105003-7.png||height="613" width="458"]]
270
271
272 [[image:image-20240819104942-6.png||height="702" width="974"]]
273
274 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
275
276
277 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
278
279 === 3.3.1 Get MQTT Credentials ===
280
281
282 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
283
284 [[image:image-20240819173602-1.png||height="401" width="743"]]
285
286 [[image:image-20240819173706-3.png||height="595" width="597"]]
287
288
289 === 3.3.2 Simulate with MQTT.fx ===
290
291 ==== 3.3.2.1 Establish MQTT Connection ====
292
293
294 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
295
296 [[image:image-20240819173826-4.png||height="534" width="734"]]
297
298 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
299
300 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
301
302 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
303
304 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
305
306 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
307
308
309 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
310
311
312 [[image:image-20240819174033-5.png]]
313
314 [[image:image-20240819174209-6.png]]
315
316 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
317
318 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
319
320 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
321
322 Where 63 and 67 are the value to be published to field1 & field2.
323
324 (% style="color:blue" %)**Result: **
325
326 [[image:image-20240819174314-7.png||height="469" width="785"]]
327
328
329 === 3.3.3 Configure NB-IoT Sensor for connection ===
330
331 ==== 3.3.3.1 AT Commands: ====
332
333
334 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
335
336 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
337
338 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
339
340 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
341
342 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
343
344 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
345
346 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
347
348
349 ==== 3.3.3.2 Uplink Examples ====
350
351
352 [[image:image-20240819174540-8.png]]
353
354 For SE01-NB
355
356 For DDS20-NB
357
358 For DDS45-NB
359
360 For DDS75-NB
361
362 For NMDS120-NB
363
364 For SPH01-NB
365
366 For NLM01-NB
367
368 For NMDS200-NB
369
370 For CPN01-NB
371
372 For DS03A-NB
373
374 For SN50V3-NB
375
376
377 ==== 3.3.3.3 Map fields to sensor value ====
378
379
380 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
381
382 [[image:image-20240819174610-9.png]]
383
384 [[image:image-20240819174618-10.png]]
385
386 Below is the NB-IoT Product Table show the mapping.
387
388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
389 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:139px" %)Field4|(% style="background-color:#4f81bd; color:white; width:141px" %)Field5|(% style="background-color:#4f81bd; color:white; width:142px" %)Field6|(% style="background-color:#4f81bd; color:white; width:151px" %)Field7|(% style="background-color:#4f81bd; color:white; width:137px" %)Field8|(% style="background-color:#4f81bd; color:white; width:69px" %)Field9|(% style="background-color:#4f81bd; color:white; width:65px" %)Field10
390 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
391 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:139px" %)dielectric_constant|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
392 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
393 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
396 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
398 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
399 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:139px" %)calc flag|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
400 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:139px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:141px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:142px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:137px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:69px" %)Battery|(% colspan="1" rowspan="1" style="width:65px" %)RSSI
401 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:142px" %)adc0|(% colspan="1" rowspan="1" style="width:151px" %)Temperature |(% colspan="1" rowspan="1" style="width:137px" %)Humidity|(% colspan="1" rowspan="1" style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
402 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc0|(% colspan="1" style="width:151px" %)distance|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
403 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)adc0|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc1|(% colspan="1" style="width:151px" %)Temperature|(% colspan="1" style="width:137px" %)Humidity|(% colspan="1" style="width:69px" %)adc4|(% colspan="1" style="width:65px" %)
404 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)DS18B20 Temp2|(% colspan="1" style="width:137px" %)DS18B20 Temp3|(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
405 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)Weight|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)count|(% colspan="1" style="width:141px" %) |(% colspan="1" style="width:142px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
407
408 == 3.4 [[Datacake>>https://datacake.co/]] ==
409
410 (% class="wikigeneratedid" %)
411 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
412
413 (% class="wikigeneratedid" %)
414 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
415
416 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
417
418 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
419
420
421 === 3.4.1 For device Already has template ===
422
423 ==== 3.4.1.1 Create Device ====
424
425
426 (% style="color:blue" %)**Add Device**(%%) in DataCake.
427
428 [[image:image-20240820110003-1.png]]
429
430 [[image:image-20240820110017-2.png]]
431
432 (% style="color:blue" %)**Choose the correct model**(%%) from template.
433
434 [[image:image-20240820110031-3.png]]
435
436 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
437
438 [[image:image-20240820110048-4.png]]
439
440 [[image:image-20240820110103-5.png]]
441
442 [[image:image-20240820110114-6.png]]
443
444
445 === 3.4.2 For Device already registered in DataCake before shipped ===
446
447 ==== 3.4.2.1 Scan QR Code to get the device info ====
448
449
450 Users can use their phones or computers to scan QR codes to obtain device data information.
451
452 [[image:image-20240820110129-7.png]]
453
454 [[image:image-20240820110218-9.png]]
455
456
457 ==== 3.4.2.2 Claim Device to User Account ====
458
459 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
460
461
462 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
463
464
465 **Step1: Add a device**
466
467 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
468
469
470 **Step2: Choose your device type,please select dragino NB-IOT device**
471
472 [[image:image-20240820110247-11.png]]
473
474
475 **Step3: Choose to create a new device**
476
477 [[image:image-20240820111016-12.png]]
478
479
480 **Step4: Fill in the device ID of your NB device**
481
482 [[image:image-20240820111101-13.png]]
483
484
485 **Step5: Please select your device plan according to your needs and complete the creation of the device**
486
487 [[image:image-20240820111113-14.png]]
488
489
490 **Step6: Please add the decoder at the payload decoder of the device configuration.**
491
492 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
493
494 [[image:image-20240820111236-15.png]]
495
496 [[image:image-20240820111248-16.png]]
497
498
499 **Step7: Add the output of the decoder as a field**
500
501 [[image:image-20240820111259-17.png]]
502
503
504 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
505
506 [[image:image-20240820111312-18.png]]
507
508 [[image:image-20240820111322-19.png]]
509
510 [[image:image-20240820111333-20.png]]
511
512
513 === 3.4.4 For device have not configured to connect to DataCake ===
514
515
516 (% class="lead" %)
517 Use AT command for connecting to DataCake
518
519 (% style="color:blue" %)**AT+PRO=2,0**
520
521 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
522
523
524 == 3.5 Node-Red (via MQTT) ==
525
526 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
527
528
529 Take S31-NB UDP protocol as an example.
530
531 Dragino provides input flow examples for the sensors.
532
533 User can download the required JSON file through Dragino Node-RED input flow template.
534
535 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
536
537 We can directly import the template.
538
539 The templates for S31-NB and NB95S31B are the same.
540
541 [[image:image-20240820111353-21.png]]
542
543 Please select the NB95S31B template.
544
545 [[image:image-20240820111405-22.png]]
546
547 [[image:image-20240820111418-23.png]]
548
549 [[image:image-20240820111427-24.png]]
550
551 Successfully imported template.
552
553 [[image:image-20240820111438-25.png]]
554
555 Users can set UDP port.
556
557 [[image:image-20240820111448-26.png]]
558
559
560 === 3.5.2 Simulate Connection ===
561
562
563 We have completed the configuration of UDP. We can try sending packets to node red.
564
565 [[image:image-20240820111504-27.png]]
566
567 [[image:image-20240820111515-28.png]]
568
569
570 === 3.5.3 Configure NB-IoT Sensors ===
571
572
573 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
574 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
575 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
576 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
577 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
578 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
579
580
581 == 3.6 ThingsBoard.Cloud (via MQTT) ==
582
583 === 3.6.1 Configure ThingsBoard ===
584
585 ==== 3.6.1.1 Create Device ====
586
587
588 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
589
590 [[image:image-20240820112210-29.png]]
591
592
593 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
594
595
596 (% style="color:blue" %)**Uplink Converter**
597
598 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
599
600 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
601
602 [[image:image-20240820112222-30.png]]
603
604 (% style="color:blue" %)**Downlink Converter**
605
606 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
607
608 [[image:image-20240820112236-31.png]]
609
610 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
611
612
613 ==== 3.6.1.3 MQTT Integration Setup ====
614
615
616 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
617
618 [[image:image-20240820112247-32.png]]
619
620 * The next steps is to add the recently created uplink and downlink converters;
621
622 [[image:image-20240820112302-33.png]]
623
624 [[image:image-20240820112316-34.png]]
625
626 (% style="color:blue" %)**Add a topic filter:**
627
628 Consistent with the theme of the node setting.
629
630 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
631
632 [[image:image-20240820112330-35.png]]
633
634
635 === 3.6.2 Simulate with MQTT.fx ===
636
637 [[image:image-20240820112340-36.png]]
638
639 [[image:image-20240820112351-37.png]]
640
641
642 === 3.6.3 Configure NB-IoT Sensor ===
643
644
645 (% style="color:blue" %)**AT Commands**
646
647 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
648
649 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
650
651 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
652
653 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
654
655 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
656
657 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
658
659 Test Uplink by click the button for 1 second
660
661 [[image:image-20240820112404-38.png]]
662
663 [[image:image-20240820112416-39.png]]
664
665 [[image:image-20240820112426-40.png]]
666
667
668 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
669
670 === 3.7.1 Create device & Get Credentials ===
671
672
673 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
674
675 [[image:image-20240820112516-41.png]]
676
677 [[image:image-20240820112526-42.png]]
678
679 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
680
681 [[image:image-20240820112539-43.png]]
682
683 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
684
685 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
686
687 * (% style="color:#037691" %)**Profile Name: “Any name”**
688
689 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
690
691 * (% style="color:#037691" %)**Broker Port: 8883**
692
693 * (% style="color:#037691" %)**Client ID: “Any value”**
694
695 (% style="color:blue" %)**On the section User credentials, set the following information:**
696
697 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
698
699 * (% style="color:#037691" %)**Password: “Your device token”**
700
701 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
702
703 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
704
705 (% style="color:blue" %)**AT command:**
706
707 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
708
709 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
710
711 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
712
713 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
714
715 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
716
717 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
718
719
720 === 3.7.2 Simulate with MQTT.fx ===
721
722
723 [[image:image-20240820112552-44.png]]
724
725 [[image:image-20240820112604-45.png]]
726
727 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
728
729 [[image:image-20240820112615-46.png]]
730
731 [[image:image-20240820112626-47.png]]
732
733
734 === 3.7.3 tago data ===
735
736
737 [[image:image-20240820112637-48.png]]
738
739 [[image:image-20240820112647-49.png]]
740
741
742 == 3.8 TCP Connection ==
743
744
745 (% style="color:blue" %)**AT command:**
746
747 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
748
749 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
750
751 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
752
753 (% style="color:blue" %)**Sensor Console Output when Uplink:**
754
755 [[image:image-20240820112704-50.png]]
756
757 (% style="color:blue" %)**See result in TCP Server:**
758
759 [[image:image-20240820112716-51.png]]
760
761
762 == 3.9 AWS Connection ==
763
764
765 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
766
767
768 = 4. COAP/UDP/MQTT/TCP downlink =
769
770 == 4.1 MQTT (via MQTT.fx) ==
771
772
773 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
774
775 **1.** Configure node MQTT connection (via MQTT.fx):
776
777 (% style="color:blue" %)**AT command:**
778
779 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
780
781 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
782
783 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
784
785 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
786
787 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
788
789 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
790
791 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
792
793 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
794
795
796 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
797
798 [[image:image-20240820112813-54.png]]
799
800
801 **3. **The downlink command can be successfully sent only when the downlink port is open.
802
803 The downlink port is opened for about 3 seconds after uplink packets are sent.
804
805 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
806
807 [[image:image-20240820112824-55.png]]
808
809 [[image:image-20240820112835-56.png]]
810
811 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
812
813
814 == 4.2 UDP (via Thingseye) ==
815
816
817 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
818
819 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
820
821 [[image:image-20240820141843-2.png||height="546" width="821"]]
822
823 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
824
825 [[image:image-20240820143316-3.png||height="555" width="1170"]]
826
827 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
828
829 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
830
831 [[image:image-20240820143820-4.png||height="554" width="1168"]]
832
833 After the command is successfully added, the platform will send the command down on the node's next uplink.
834
835 [[image:image-20240820144913-6.png||height="585" width="1232"]]
836
837 [[image:image-20240820145133-7.png||height="582" width="1227"]]
838
839 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
840
841 [[image:image-20240820145309-8.png]]
842
843
844 = 5. GPS positioning function =
845
846 == 1. Turn on GPS function ==
847
848
849 (% class="wikigeneratedid" %)
850 AT+GPS=1 or 0  ~/~/ GPS function on or off
851
852
853 == 2. Extend the time to turn on GNSS ==
854
855
856 AT+GNSST=30  ~/~/ GPS search for positioning information for 30 seconds
857
858
859 == 3. Get or set GPS positioning interval in units of hour ==
860
861
862 AT+GTDC=24  ~/~/ The device will activate GPS positioning every 24 hours
863
864
865 = 6. FAQ =
866
867 == 6.1 What is the usage of Multi Sampling and One Uplink? ==
868
869
870 The NB series has the feature for Multi Sampling and one uplink. See one of them
871
872 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
873
874 User can use this feature for below purpose:
875
876 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
877 1. Give more sampling data points.
878 1. Increase reliable in transmission. For example. If user set
879 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
880 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
881 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
882 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
883
884
885 == 6.2 Why the uplink JSON format is not standard? ==
886
887
888 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
889
890 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
891
892 [[image:image-20240820112848-57.png]]
893
894
895 = 7. Trouble Shooting: =
896
897 == 7.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
898
899
900 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
901
902 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
903
904 [[image:image-20240820112859-58.png]]
905
906 If fail to attach network, it will shows signal 99. as below:
907
908 [[image:image-20240820112908-59.png]]
909
910 (% class="lead" %)
911 When see this issue, below are the checklist:
912
913 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
914 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
915 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
916 * Check if the device is attached to Carrier network but reject. (need to check with operator).
917 * Check if the antenna is connected firmly.
918
919 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
920
921
922 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.2 Why sometime the AT Command is slow in reponse?(%%) ==
923
924
925 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
926
927 [[image:image-20240820113015-60.png]]
928
929
930 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)7.3 What is the Downlink Command by the -CB device?(%%) ==
931
932 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
933 === UDP: ===
934
935 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
936 Its downlink command is the same as the AT command, but brackets are required.
937 Example:
938
939 {AT+TDC=300}
940
941
942 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
943 === MQTT: ===
944
945 Json:
946
947 The Json format in MQTT mode needs to be configured with all commands.
948 If you have configurations that need to be changed, please change them in the template below.
949 Template:
950
951 {
952 "AT+SERVADDR":"119.91.62.30,1882",
953 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
954 "AT+UNAME":"usenamedragino",
955 "AT+PWD":"passworddragino",
956 "AT+PUBTOPIC":"123",
957 "AT+SUBTOPIC":"321",
958 "AT+TDC":"7200",
959 "AT+INTMOD":"0",
960 "AT+APN":"NULL",
961 "AT+5VT":"0",
962 "AT+PRO":"3,5",
963 "AT+TR":"900",
964 "AT+NOUD":"0",
965 "AT+CSQTIME":"5",
966 "AT+DNSTIMER":"0",
967 "AT+TLSMOD":"0,0",
968 "AT+MQOS":"0",
969 "AT+TEMPALARM1":"0",
970 "AT+TEMPALARM2":"10",
971 "AT+TEMPALARM3":"0"
972 }
973
974 Hex:
975
976 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
977
978 The supported commands are consistent with LoRaWAN's hex commands.
979 Please refer to the following link to obtain the hex format:
980
981 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
982
983
984 == 7.4 What if the signal is good but the domain name resolution fails? ==
985
986
987 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
988
989 [[image:image-20240827150705-6.png||height="489" width="687"]]
990
991 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
992
993 * Set the DNS
994
995 (% style="color:blue" %)**AT Command: AT+GDNS**
996
997 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
998
999 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
1000
1001 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1002
1003 Example:
1004
1005 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
1006
1007
1008 == 7.5 GPS debugging ==
1009
1010
1011 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1012
1013 [[image:image-20240903104250-9.png||height="275" width="614"]]
1014
1015
1016 [[image:image-20240903104431-10.png||height="291" width="621"]]
1017
1018
1019 === 7.5.1 GPS commands ===
1020
1021
1022 The following are three related AT commands that introduce GPS functions.
1023
1024 * **Turn on/off GPS**
1025
1026 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1027
1028 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1029
1030 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1031
1032 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1033
1034 Format: Command Code (0x11) followed by 1 byte.
1035
1036 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1037
1038 * **Set GNSS open time**
1039
1040 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1041
1042 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1043
1044 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1045
1046 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1047
1048 Format: Command Code (0x10) followed by 2 bytes.
1049
1050 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1051
1052 * **Set GPS positioning interval**
1053
1054 Feature: Set GPS positioning interval (unit: hour).
1055
1056 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1057
1058 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1059
1060 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1061
1062 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1063
1064 Format: Command Code (0x12) followed by 3 bytes.
1065
1066 Example: 24 hours:  24(D)=0x18(H)
1067
1068 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1069
1070
1071 === 7.5.2 GPS workflow ===
1072
1073
1074 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1075
1076 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1077
1078 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1079
1080 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1081
1082 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1083
1084 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1085
1086 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1087
1088
1089 === 7.5.3 GPS debugging methods ===
1090
1091
1092 In summary, we can deduce the methods of debugging GPS:
1093
1094 * **Check whether the GPS function is enabled.**
1095
1096 [[image:image-20240903102327-5.png||height="271" width="529"]]
1097
1098 * **Check whether the GPS antenna is loose**.
1099
1100 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1101
1102 [[image:image-20240903094214-1.png||height="340" width="461"]]
1103
1104 * **Use the AT+GNSST command to extend the positioning time.**
1105
1106 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1107
1108 If the location fails, users can extend the location time.
1109
1110 [[image:image-20240903102641-8.png||height="303" width="600"]]
1111
1112
1113
1114
1115