Version 129.1 by Xiaoling on 2024/09/14 10:49

Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
12
13
14 = 2. Attach Network =
15
16 == 2.1 General Configure to attach network ==
17
18 To attache end nodes to NB-IoT or LTE-M Network, You need to:
19
20 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
21 1. Power Off End Node ( See below for the power off/on position)
22 1. Insert the SIM card to Sensor. ( See below for direction)
23 1. Power On End Node
24 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
25
26 [[image:image-20240602220856-1.png]]
27
28
29 放一张如何插卡图片。
30
31
32 After doing above, the end nodes should be able to attach to NB-IoT network .
33
34 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
35
36 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
37
38 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
39
40 Make sure you use a the NB-IoT or LTE-M SIM card.
41
42 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
43 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
44 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
45 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
46
47 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
48 )))|(% style="width:351px" %)(((
49 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
50 )))|(% style="width:120px" %)UK: Band20
51 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
52 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
53
54 == 2.2 Speed Up Network Attach time ==
55
56 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
57
58 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
59
60 Attache to 1NCE card for Australia use:
61
62 * AT+COPS=1,2,"50501",8
63 * AT+QCFG="band",0,0x8000000,0x8000000,1
64
65 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
66
67 AT+QENG="servingcell"
68 +QENG: "servingcell","NOCONN","eMTC","FD
69 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
70
71
72 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
73
74 === **1.Configure Frequency Band** ===
75
76 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
77
78 <GSM_bandval>:
79
80 0 No change 
81 0x1 EGSM900
82 0x2 DCS1800
83 0x4 GSM850 
84 0x8 PCS1900 
85 0xF All of the supported bands above
86
87 <eMTC_bandval>:
88
89 0 No change 
90 0x1  LTE B1
91 0x2  LTE B2 
92 0x4  LTE B3 
93 0x8  LTE B4 
94 0x10  LTE B5 
95 0x80  LTE B8 
96 0x800  LTE B12 
97 0x1000  LTE B13 
98 0x20000  LTE B18 
99 0x40000  LTE B19 
100 0x80000  LTE B20 
101 0x1000000  LTE B25 
102 0x2000000  LTE B26 
103 0x4000000  LTE B27 
104 0x8000000  LTE B28 
105 0x40000000  LTE B31 
106 0x20000000000000000  LTE B66 
107 0x800000000000000000  LTE B72 
108 0x1000000000000000000  LTE B73 
109 0x1000000000000000000000  LTE B85
110
111 <NB-IoT_bandval>:
112
113 0 No change 
114 0x1  LTE B1
115 0x2  LTE B2 
116 0x4  LTE B3 
117 0x8  LTE B4 
118 0x10  LTE B5 
119 0x80  LTE B8 
120 0x800  LTE B12 
121 0x1000  LTE B13 
122 0x20000  LTE B18 
123 0x40000  LTE B19 
124 0x80000  LTE B20 
125 0x1000000  LTE B25 
126 0x8000000  LTE B28 
127 0x40000000  LTE B31 
128 0x20000000000000000  LTE B66
129
130 0x400000000000000000  LTE B71
131 0x800000000000000000  LTE B72 
132 0x1000000000000000000  LTE B73 
133 0x1000000000000000000000  LTE B85
134
135 For example, setting the LTE-M network frequency band to 3.
136
137 AT+QCFG="band",0xF,0x4,0,1
138
139 When searching for all bands, the value of this command is set to:
140
141 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
142
143
144 === **2.Configure search network sequence** ===
145
146 AT+QCFG="nwscanseq",<scanseq>,1
147
148 <scanseq>:
149
150 00 Automatic (eMTC → NB-IoT → GSM) 
151 01 GSM 
152 02 eMTC 
153 03 NB-IoT
154
155 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
156
157 === **3.Configure Network Category to be Searched for under LTE RAT** ===
158
159 AT+QCFG="iotopmode",mode,1
160
161 0 eMTC 
162 1 NB-IoT 
163 2 eMTC and NB-IoT
164
165 === **4.AT command to set frequency band and network category** ===
166
167 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
168
169 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
170
171 **Example :**
172
173 Taking the use of 1nce cards in **the United States** as an example.
174
175 AT+APN=iot.1nce.net  ~/~/set APN
176
177 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
178
179 AT+IOTMOD=0  ~/~/ Set  eMTC Network
180
181 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
182
183
184 = 3. Configure to connect to different servers =
185
186 == 3.1 General UDP Connection ==
187
188 The NB-IoT Sensor can send packet to server use UDP protocol.
189
190
191 === 3.1.1 Simulate UDP Connection by PC tool ===
192
193
194 We can use PC tool to simulate UDP connection to make sure server works ok.
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/WebHome/image-20230802112413-1.png?width=1024&height=468&rev=1.1||alt="image-20230802112413-1.png"]]
197
198
199 === 3.1.2 Configure NB-IoT Sensor ===
200
201 ==== 3.1.2.1 AT Commands ====
202
203
204 (% style="color:blue" %)**AT Commands:**
205
206 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
207
208 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
209
210 [[image:image-20240819102802-1.png]]
211
212
213 ==== 3.1.2.2 Uplink Example ====
214
215
216 [[image:image-20240819105418-8.png||height="611" width="1287"]]
217
218
219 == 3.2 General COAP Connection ==
220
221
222 The NB-IoT Sensor can send packet to server use COAP protocol.
223
224 Below are the commands.
225
226 (% style="color:blue" %)**AT Commands:**
227
228 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
229
230 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
231
232 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
233 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
234
235 [[image:image-20240819103212-2.png]]
236
237
238 === 3.2.1 Uplink Example ===
239
240
241 [[image:image-20240819103909-4.png||height="453" width="955"]]
242
243
244 == 3.2 General MQTT Connection ==
245
246
247 The NB-IoT Sensor can send packet to server use MQTT protocol.
248
249 Below are the commands.
250
251 (% style="color:blue" %)**AT Commands:**
252
253 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
254
255 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
256
257 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
258
259 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
260
261 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
262
263 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
264
265 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
266
267 [[image:image-20240819105003-7.png||height="613" width="458"]]
268
269
270 [[image:image-20240819104942-6.png||height="702" width="974"]]
271
272 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
273
274
275 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
276
277 === 3.3.1 Get MQTT Credentials ===
278
279
280 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
281
282 [[image:image-20240819173602-1.png||height="401" width="743"]]
283
284 [[image:image-20240819173706-3.png||height="595" width="597"]]
285
286
287 === 3.3.2 Simulate with MQTT.fx ===
288
289 ==== 3.3.2.1 Establish MQTT Connection ====
290
291
292 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
293
294 [[image:image-20240819173826-4.png||height="534" width="734"]]
295
296 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
297
298 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
299
300 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
301
302 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
303
304 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
305
306
307
308 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
309
310
311 [[image:image-20240819174033-5.png]]
312
313 [[image:image-20240819174209-6.png]]
314
315 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
316
317 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
318
319 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
320
321 Where 63 and 67 are the value to be published to field1 & field2.
322
323 (% style="color:blue" %)**Result: **
324
325 [[image:image-20240819174314-7.png||height="469" width="785"]]
326
327
328 === 3.3.3 Configure NB-IoT Sensor for connection ===
329
330 ==== 3.3.3.1 AT Commands: ====
331
332
333 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
334
335 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
336
337 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
338
339 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
340
341 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
342
343 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
344
345 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
346
347
348
349 ==== 3.3.3.2 Uplink Examples ====
350
351
352 [[image:image-20240819174540-8.png]]
353
354 For SE01-NB
355
356 For DDS20-NB
357
358 For DDS45-NB
359
360 For DDS75-NB
361
362 For NMDS120-NB
363
364 For SPH01-NB
365
366 For NLM01-NB
367
368 For NMDS200-NB
369
370 For CPN01-NB
371
372 For DS03A-NB
373
374 For SN50V3-NB
375
376
377 ==== 3.3.3.3 Map fields to sensor value ====
378
379
380 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
381
382 [[image:image-20240819174610-9.png]]
383
384 [[image:image-20240819174618-10.png]]
385
386 Below is the NB-IoT Product Table show the mapping.
387
388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1353.82px" %)
389 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:139px" %)Field4|(% style="background-color:#4f81bd; color:white; width:141px" %)Field5|(% style="background-color:#4f81bd; color:white; width:142px" %)Field6|(% style="background-color:#4f81bd; color:white; width:151px" %)Field7|(% style="background-color:#4f81bd; color:white; width:137px" %)Field8|(% style="background-color:#4f81bd; color:white; width:69px" %)Field9|(% style="background-color:#4f81bd; color:white; width:65px" %)Field10
390 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
391 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:139px" %)dielectric_constant|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
392 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
393 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
394 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
395 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:139px" %) |(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
396 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
397 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
398 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:139px" %)RSSI|(% style="width:141px" %) |(% style="width:142px" %) |(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
399 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:139px" %)calc flag|(% style="width:141px" %)Battery|(% style="width:142px" %)RSSI|(% style="width:151px" %) |(% style="width:137px" %) |(% style="width:69px" %) |(% style="width:65px" %)
400 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:139px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:141px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:142px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:137px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:69px" %)Battery|(% colspan="1" rowspan="1" style="width:65px" %)RSSI
401 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:142px" %)adc0|(% colspan="1" rowspan="1" style="width:151px" %)Temperature |(% colspan="1" rowspan="1" style="width:137px" %)Humidity|(% colspan="1" rowspan="1" style="width:69px" %) |(% colspan="1" rowspan="1" style="width:65px" %)
402 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc0|(% colspan="1" style="width:151px" %)distance|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
403 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)adc0|(% colspan="1" style="width:141px" %)exit_state/input PA4|(% colspan="1" style="width:142px" %)adc1|(% colspan="1" style="width:151px" %)Temperature|(% colspan="1" style="width:137px" %)Humidity|(% colspan="1" style="width:69px" %)adc4|(% colspan="1" style="width:65px" %)
404 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)DS18B20 Temp2|(% colspan="1" style="width:137px" %)DS18B20 Temp3|(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
405 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)DS18B20 Temp|(% colspan="1" style="width:141px" %)adc0|(% colspan="1" style="width:142px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)Weight|(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
406 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:139px" %)count|(% colspan="1" style="width:141px" %) |(% colspan="1" style="width:142px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:137px" %) |(% colspan="1" style="width:69px" %) |(% colspan="1" style="width:65px" %)
407
408 == 3.4 [[Datacake>>https://datacake.co/]] ==
409
410 (% class="wikigeneratedid" %)
411 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
412
413 (% class="wikigeneratedid" %)
414 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
415
416 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
417
418 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
419
420
421
422 === 3.4.1 For device Already has template ===
423
424 ==== 3.4.1.1 Create Device ====
425
426
427 (% style="color:blue" %)**Add Device**(%%) in DataCake.
428
429 [[image:image-20240820110003-1.png]]
430
431 [[image:image-20240820110017-2.png]]
432
433 (% style="color:blue" %)**Choose the correct model**(%%) from template.
434
435 [[image:image-20240820110031-3.png]]
436
437 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
438
439 [[image:image-20240820110048-4.png]]
440
441 [[image:image-20240820110103-5.png]]
442
443 [[image:image-20240820110114-6.png]]
444
445
446 === 3.4.2 For Device already registered in DataCake before shipped ===
447
448 ==== 3.4.2.1 Scan QR Code to get the device info ====
449
450
451 Users can use their phones or computers to scan QR codes to obtain device data information.
452
453 [[image:image-20240820110129-7.png]]
454
455 [[image:image-20240820110218-9.png]]
456
457
458 ==== 3.4.2.2 Claim Device to User Account ====
459
460 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
461
462
463 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
464
465
466 **Step1: Add a device**
467
468 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
469
470
471 **Step2: Choose your device type,please select dragino NB-IOT device**
472
473 [[image:image-20240820110247-11.png]]
474
475
476 **Step3: Choose to create a new device**
477
478 [[image:image-20240820111016-12.png]]
479
480
481 **Step4: Fill in the device ID of your NB device**
482
483 [[image:image-20240820111101-13.png]]
484
485
486 **Step5: Please select your device plan according to your needs and complete the creation of the device**
487
488 [[image:image-20240820111113-14.png]]
489
490
491 **Step6: Please add the decoder at the payload decoder of the device configuration.**
492
493 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
494
495 [[image:image-20240820111236-15.png]]
496
497 [[image:image-20240820111248-16.png]]
498
499
500 **Step7: Add the output of the decoder as a field**
501
502 [[image:image-20240820111259-17.png]]
503
504
505 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
506
507 [[image:image-20240820111312-18.png]]
508
509 [[image:image-20240820111322-19.png]]
510
511 [[image:image-20240820111333-20.png]]
512
513
514 === 3.4.4 For device have not configured to connect to DataCake ===
515
516
517 (% class="lead" %)
518 Use AT command for connecting to DataCake
519
520 (% style="color:blue" %)**AT+PRO=2,0**
521
522 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
523
524
525 == 3.5 Node-Red (via MQTT) ==
526
527 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
528
529
530 Take S31-NB UDP protocol as an example.
531
532 Dragino provides input flow examples for the sensors.
533
534 User can download the required JSON file through Dragino Node-RED input flow template.
535
536 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
537
538 We can directly import the template.
539
540 The templates for S31-NB and NB95S31B are the same.
541
542 [[image:image-20240820111353-21.png]]
543
544 Please select the NB95S31B template.
545
546 [[image:image-20240820111405-22.png]]
547
548 [[image:image-20240820111418-23.png]]
549
550 [[image:image-20240820111427-24.png]]
551
552 Successfully imported template.
553
554 [[image:image-20240820111438-25.png]]
555
556 Users can set UDP port.
557
558 [[image:image-20240820111448-26.png]]
559
560
561 === 3.5.2 Simulate Connection ===
562
563
564 We have completed the configuration of UDP. We can try sending packets to node red.
565
566 [[image:image-20240820111504-27.png]]
567
568 [[image:image-20240820111515-28.png]]
569
570
571 === 3.5.3 Configure NB-IoT Sensors ===
572
573
574 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
575 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
576 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
577 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
578 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
579 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
580
581
582
583 == 3.6 ThingsBoard.Cloud (via MQTT) ==
584
585 === 3.6.1 Configure ThingsBoard ===
586
587 ==== 3.6.1.1 Create Device ====
588
589
590 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
591
592 [[image:image-20240820112210-29.png]]
593
594
595 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
596
597
598 (% style="color:blue" %)**Uplink Converter**
599
600 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
601
602 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
603
604 [[image:image-20240820112222-30.png]]
605
606 (% style="color:blue" %)**Downlink Converter**
607
608 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
609
610 [[image:image-20240820112236-31.png]]
611
612 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
613
614
615 ==== 3.6.1.3 MQTT Integration Setup ====
616
617
618 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
619
620 [[image:image-20240820112247-32.png]]
621
622 * The next steps is to add the recently created uplink and downlink converters;
623
624 [[image:image-20240820112302-33.png]]
625
626 [[image:image-20240820112316-34.png]]
627
628 (% style="color:blue" %)**Add a topic filter:**
629
630 Consistent with the theme of the node setting.
631
632 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
633
634 [[image:image-20240820112330-35.png]]
635
636
637 === 3.6.2 Simulate with MQTT.fx ===
638
639 [[image:image-20240820112340-36.png]]
640
641 [[image:image-20240820112351-37.png]]
642
643
644 === 3.6.3 Configure NB-IoT Sensor ===
645
646
647 (% style="color:blue" %)**AT Commands**
648
649 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
650
651 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
652
653 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
654
655 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
656
657 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
658
659 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
660
661 Test Uplink by click the button for 1 second
662
663 [[image:image-20240820112404-38.png]]
664
665 [[image:image-20240820112416-39.png]]
666
667 [[image:image-20240820112426-40.png]]
668
669
670 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
671
672 === 3.7.1 Create device & Get Credentials ===
673
674
675 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
676
677 [[image:image-20240820112516-41.png]]
678
679 [[image:image-20240820112526-42.png]]
680
681 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
682
683 [[image:image-20240820112539-43.png]]
684
685 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
686
687 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
688
689 * (% style="color:#037691" %)**Profile Name: “Any name”**
690
691 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
692
693 * (% style="color:#037691" %)**Broker Port: 8883**
694
695 * (% style="color:#037691" %)**Client ID: “Any value”**
696
697 (% style="color:blue" %)**On the section User credentials, set the following information:**
698
699 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
700
701 * (% style="color:#037691" %)**Password: “Your device token”**
702
703 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
704
705 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
706
707 (% style="color:blue" %)**AT command:**
708
709 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
710
711 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
712
713 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
714
715 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
716
717 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
718
719 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
720
721
722
723 === 3.7.2 Simulate with MQTT.fx ===
724
725
726 [[image:image-20240820112552-44.png]]
727
728 [[image:image-20240820112604-45.png]]
729
730 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
731
732 [[image:image-20240820112615-46.png]]
733
734 [[image:image-20240820112626-47.png]]
735
736
737 === 3.7.3 tago data ===
738
739
740 [[image:image-20240820112637-48.png]]
741
742 [[image:image-20240820112647-49.png]]
743
744
745 == 3.8 TCP Connection ==
746
747
748 (% style="color:blue" %)**AT command:**
749
750 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
751
752 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
753
754 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
755
756 (% style="color:blue" %)**Sensor Console Output when Uplink:**
757
758 [[image:image-20240820112704-50.png]]
759
760 (% style="color:blue" %)**See result in TCP Server:**
761
762 [[image:image-20240820112716-51.png]]
763
764
765 == 3.9 AWS Connection ==
766
767
768 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
769
770
771 = 4. COAP/UDP/MQTT/TCP downlink =
772
773 == 4.1 MQTT (via MQTT.fx) ==
774
775
776 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
777
778 **1.** Configure node MQTT connection (via MQTT.fx):
779
780 (% style="color:blue" %)**AT command:**
781
782 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
783
784 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
785
786 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
787
788 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
789
790 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
791
792 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
793
794 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
795
796 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
797
798
799 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
800
801 [[image:image-20240820112813-54.png]]
802
803
804 **3. **The downlink command can be successfully sent only when the downlink port is open.
805
806 The downlink port is opened for about 3 seconds after uplink packets are sent.
807
808 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
809
810 [[image:image-20240820112824-55.png]]
811
812 [[image:image-20240820112835-56.png]]
813
814 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
815
816
817 == 4.2 UDP (via Thingseye) ==
818
819
820 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
821
822 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
823
824 [[image:image-20240820141843-2.png||height="546" width="821"]]
825
826 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
827
828 [[image:image-20240820143316-3.png||height="555" width="1170"]]
829
830 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
831
832 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
833
834 [[image:image-20240820143820-4.png||height="554" width="1168"]]
835
836 After the command is successfully added, the platform will send the command down on the node's next uplink.
837
838 [[image:image-20240820144913-6.png||height="585" width="1232"]]
839
840 [[image:image-20240820145133-7.png||height="582" width="1227"]]
841
842 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
843
844 [[image:image-20240820145309-8.png]]
845
846
847 = 5. GPS positioning function =
848
849 === 1. Turn on GPS function ===
850
851 (% class="wikigeneratedid" %)
852 AT+GPS=1 or 0  ~/~/GPS function on or off
853
854
855 === 2.Extend the time to turn on GNSS ===
856
857 AT+GNSST=30  ~/~/GPS search for positioning information for 30 seconds
858
859
860 === 3.Get or set GPS positioning interval in units of hour ===
861
862 AT+GTDC=24  ~/~/The device will activate GPS positioning every 24 hours
863
864
865 = 5. FAQ =
866
867 == 5.1 What is the usage of Multi Sampling and One Uplink? ==
868
869
870 The NB series has the feature for Multi Sampling and one uplink. See one of them
871
872 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
873
874 User can use this feature for below purpose:
875
876 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
877 1. Give more sampling data points.
878 1. Increase reliable in transmission. For example. If user set
879 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
880 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
881 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
882 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
883
884
885
886 == 5.2 Why the uplink JSON format is not standard? ==
887
888
889 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
890
891 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
892
893 [[image:image-20240820112848-57.png]]
894
895
896 = 6. Trouble Shooting: =
897
898 == 6.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
899
900
901 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
902
903 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
904
905 [[image:image-20240820112859-58.png]]
906
907 If fail to attach network, it will shows signal 99. as below:
908
909 [[image:image-20240820112908-59.png]]
910
911 (% class="lead" %)
912 When see this issue, below are the checklist:
913
914 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
915 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
916 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
917 * Check if the device is attached to Carrier network but reject. (need to check with operator).
918 * Check if the antenna is connected firmly.
919
920 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
921
922
923 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.2 Why sometime the AT Command is slow in reponse?(%%) ==
924
925
926 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
927
928 [[image:image-20240820113015-60.png]]
929
930
931 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.3 What is the Downlink Command by the -CB device?(%%) ==
932
933 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
934 === UDP: ===
935
936 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
937 Its downlink command is the same as the AT command, but brackets are required.
938 Example:
939
940 {AT+TDC=300}
941
942
943 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
944 === MQTT: ===
945
946 Json:
947
948 The Json format in MQTT mode needs to be configured with all commands.
949 If you have configurations that need to be changed, please change them in the template below.
950 Template:
951
952 {
953 "AT+SERVADDR":"119.91.62.30,1882",
954 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
955 "AT+UNAME":"usenamedragino",
956 "AT+PWD":"passworddragino",
957 "AT+PUBTOPIC":"123",
958 "AT+SUBTOPIC":"321",
959 "AT+TDC":"7200",
960 "AT+INTMOD":"0",
961 "AT+APN":"NULL",
962 "AT+5VT":"0",
963 "AT+PRO":"3,5",
964 "AT+TR":"900",
965 "AT+NOUD":"0",
966 "AT+CSQTIME":"5",
967 "AT+DNSTIMER":"0",
968 "AT+TLSMOD":"0,0",
969 "AT+MQOS":"0",
970 "AT+TEMPALARM1":"0",
971 "AT+TEMPALARM2":"10",
972 "AT+TEMPALARM3":"0"
973 }
974
975 Hex:
976
977 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
978
979 The supported commands are consistent with LoRaWAN's hex commands.
980 Please refer to the following link to obtain the hex format:
981
982 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
983
984
985 == 6.4 What if the signal is good but the domain name resolution fails? ==
986
987
988 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
989
990 [[image:image-20240827150705-6.png||height="489" width="687"]]
991
992 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
993
994 * Set the DNS
995
996 (% style="color:blue" %)**AT Command: AT+GDNS**
997
998 **AT+GDNS=0**  ~/~/ Default. Automatically resolves the domain name and uses the resolved IP to communicate.
999
1000 **AT+GDNS=1    **~/~/ Disabling Domain name resolution. Use the domain name directly to communicate.
1001
1002 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
1003
1004 Example:
1005
1006 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
1007
1008
1009 == 6.5 GPS debugging ==
1010
1011
1012 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
1013
1014 [[image:image-20240903104250-9.png||height="275" width="614"]]
1015
1016
1017 [[image:image-20240903104431-10.png||height="291" width="621"]]
1018
1019
1020 === 6.5.1 GPS commands ===
1021
1022
1023 The following are three related AT commands that introduce GPS functions.
1024
1025 * **Turn on/off GPS**
1026
1027 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
1028
1029 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
1030
1031 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
1032
1033 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
1034
1035 Format: Command Code (0x11) followed by 1 byte.
1036
1037 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
1038
1039 * **Set GNSS open time**
1040
1041 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
1042
1043 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
1044
1045 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
1046
1047 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
1048
1049 Format: Command Code (0x10) followed by 2 bytes.
1050
1051 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
1052
1053 * **Set GPS positioning interval**
1054
1055 Feature: Set GPS positioning interval (unit: hour).
1056
1057 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
1058
1059 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
1060
1061 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
1062
1063 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
1064
1065 Format: Command Code (0x12) followed by 3 bytes.
1066
1067 Example: 24 hours:  24(D)=0x18(H)
1068
1069 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
1070
1071
1072 === 6.5.2 GPS workflow ===
1073
1074
1075 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
1076
1077 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
1078
1079 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
1080
1081 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
1082
1083 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1084
1085 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1086
1087 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1088
1089
1090 === 6.5.3 GPS debugging methods ===
1091
1092
1093 In summary, we can deduce the methods of debugging GPS:
1094
1095 * **Check whether the GPS function is enabled.**
1096
1097 [[image:image-20240903102327-5.png||height="271" width="529"]]
1098
1099 * **Check whether the GPS antenna is loose**.
1100
1101 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1102
1103 [[image:image-20240903094214-1.png||height="340" width="461"]]
1104
1105 * **Use the AT+GNSST command to extend the positioning time.**
1106
1107 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1108
1109 If the location fails, users can extend the location time.
1110
1111 [[image:image-20240903102641-8.png||height="303" width="600"]]
1112
1113
1114
1115
1116