Show last authors
1
2
3
4 (% class="wikigeneratedid" id="HTableofContents:" %)
5 **Table of Contents:**
6
7 {{toc/}}
8
9 = 1. The use of this guideline =
10
11 This configure instruction is for Dragino NB-IoT models with -CB or -CS suffix, for example DDS75-CB. These models use the same NB-IoT Module **[[BG95-M2>>https://www.dropbox.com/sh/3ilyaswz4odgaru/AADR86cAgL9UGlmLuEH-UZgla?st=x1ry6v5j&dl=0]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
12
13
14 = 2. Attach Network =
15
16 == 2.1 General Configure to attach network ==
17
18 To attache end nodes to NB-IoT or LTE-M Network, You need to:
19
20 1. Get a NB-IoT or LTE-M SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
21 1. Power Off End Node ( See below for the power off/on position)
22 1. Insert the SIM card to Sensor. ( See below for direction)
23 1. Power On End Node
24 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
25
26 [[image:image-20240602220856-1.png]]
27
28
29 放一张如何插卡图片。
30
31
32 After doing above, the end nodes should be able to attach to NB-IoT network .
33
34 The -CB and -CS models support (% style="color:blue" %)**LTE Cat NB2 and LTE-M (CAT-M1)**(%%), with below frequency band: multiple frequency bands of
35
36 ~-~-(% style="color:blue" %)** CAT-NB2: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71/B85 **(%%).
37
38 ~-~-(% style="color:blue" %)** CAT-M1: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 **(%%).
39
40 Make sure you use a the NB-IoT or LTE-M SIM card.
41
42 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1134px" %)
43 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:406px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:351px" %)**LTE-M Coverage**|(% style="background-color:#4f81bd; color:white; width:120px" %)**Comments**
44 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:406px" %)(((
45 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
46
47 Austria, Belgium, Bulgaria, China, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Ireland,Italy, Latvia, Malta, Netherlands, Norway, Portugal, Puerto Rico, Russia, Slovak,Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
48 )))|(% style="width:351px" %)(((
49 Argentina, Austria, Australia, Belgium, Canada, Denmark,Estonia, Finland, France, Germany, Great Britain, Hungary, Ireland, Japan,Jersey, Korea, Repiblic of, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Puerto Rico, Romania, Spain, Sweden, Switzerland,Taiwan, USA, US Virgin Islands.
50 )))|(% style="width:120px" %)UK: Band20
51 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:406px" %)China Mainland, HongKong|(% style="width:351px" %) |(% style="width:120px" %)
52 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:406px" %)China Mainland|(% style="width:351px" %) |(% style="width:120px" %)
53
54 == 2.2 Speed Up Network Attach time ==
55
56 **BG95-M2** supports multi bands (% style="color:blue" %)**in NB-IoT and LTE-M. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**.
57
58 **Note:**Before using the NB module command, users need to power on the NB module. Run the AT+QSW command to turn on and off the NB module.Remember to shut down after using the NB module command, otherwise it will consume power.
59
60 Attache to 1NCE card for Australia use:
61
62 * AT+COPS=1,2,"50501",8
63 * AT+QCFG="band",0,0x8000000,0x8000000,1
64
65 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG="servingcell"**(%%) to check which band is actually in used.
66
67 AT+QENG="servingcell"
68 +QENG: "servingcell","NOCONN","eMTC","FD
69 D",505,01,90D2C0B,258,9410,28,5,5,901A,-112,-17,-80,10,27
70
71
72 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
73
74 === **1.Configure Frequency Band** ===
75
76 AT+QCFG="band"[,<GSM_bandval>,<eMTC_bandval>,<NB-IoT_bandval>[,<effect>]]
77
78 <GSM_bandval>:
79
80 0 No change 
81 0x1 EGSM900
82 0x2 DCS1800
83 0x4 GSM850 
84 0x8 PCS1900 
85 0xF All of the supported bands above
86
87 <eMTC_bandval>:
88
89 0 No change 
90 0x1  LTE B1
91 0x2  LTE B2 
92 0x4  LTE B3 
93 0x8  LTE B4 
94 0x10  LTE B5 
95 0x80  LTE B8 
96 0x800  LTE B12 
97 0x1000  LTE B13 
98 0x20000  LTE B18 
99 0x40000  LTE B19 
100 0x80000  LTE B20 
101 0x1000000  LTE B25 
102 0x2000000  LTE B26 
103 0x4000000  LTE B27 
104 0x8000000  LTE B28 
105 0x40000000  LTE B31 
106 0x20000000000000000  LTE B66 
107 0x800000000000000000  LTE B72 
108 0x1000000000000000000  LTE B73 
109 0x1000000000000000000000  LTE B85
110
111 <NB-IoT_bandval>:
112
113 0 No change 
114 0x1  LTE B1
115 0x2  LTE B2 
116 0x4  LTE B3 
117 0x8  LTE B4 
118 0x10  LTE B5 
119 0x80  LTE B8 
120 0x800  LTE B12 
121 0x1000  LTE B13 
122 0x20000  LTE B18 
123 0x40000  LTE B19 
124 0x80000  LTE B20 
125 0x1000000  LTE B25 
126 0x8000000  LTE B28 
127 0x40000000  LTE B31 
128 0x20000000000000000  LTE B66
129
130 0x400000000000000000  LTE B71
131 0x800000000000000000  LTE B72 
132 0x1000000000000000000  LTE B73 
133 0x1000000000000000000000  LTE B85
134
135 For example, setting the LTE-M network frequency band to 3.
136
137 AT+QCFG="band",0xF,0x4,0,1
138
139 When searching for all bands, the value of this command is set to:
140
141 AT+QCFG="band",0xF,0x100002000000000f0e189f,0x10004200000000090e189f,1
142
143
144 === **2.Configure search network sequence** ===
145
146 AT+QCFG="nwscanseq",<scanseq>,1
147
148 <scanseq>:
149
150 00 Automatic (eMTC → NB-IoT → GSM) 
151 01 GSM 
152 02 eMTC 
153 03 NB-IoT
154
155 AT+QCFG="nwscanseq",02,1  ~/~/Priority search for eMTC
156
157 === **3.Configure Network Category to be Searched for under LTE RAT** ===
158
159 AT+QCFG="iotopmode",mode,1
160
161 0 eMTC 
162 1 NB-IoT 
163 2 eMTC and NB-IoT
164
165 === **4.AT command to set frequency band and network category** ===
166
167 AT+QBAND=0x100002000000000f0e189f,0x10004200000000090e189f  ~/~/<eMTC_bandval>,<NB-IoT_bandval>
168
169 AT+IOTMOD=0  ~/~/ 0 eMTC  1 NB-IoT  2 eMTC and NB-IoT
170
171 **Example :**
172
173 Taking the use of 1nce cards in **the United States** as an example.
174
175 AT+APN=iot.1nce.net  ~/~/set APN
176
177 AT+QBAND=0x100180A,0  ~/~/ eMTC :Set frequency band B2,B4,B12,B13,B25  NB-IoT:No change
178
179 AT+IOTMOD=0  ~/~/ Set  eMTC Network
180
181 **Setting the above commands in the United States will greatly reduce the network search time of the NB module.**
182
183
184 = 3. Configure to connect to different servers =
185
186 == 3.1 General UDP Connection ==
187
188 The NB-IoT Sensor can send packet to server use UDP protocol.
189
190 === 3.1.1 Simulate UDP Connection by PC tool ===
191
192 We can use PC tool to simulate UDP connection to make sure server works ok.
193
194 [[image:image-20230802112413-1.png||height="468" width="1024"]]
195
196 === 3.1.2 Configure NB-IoT Sensor ===
197
198 ==== 3.1.2.1 AT Commands ====
199
200 (% style="color:blue" %)**AT Commands:**
201
202 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/ Set to use UDP protocol to uplink ,Payload Type select Hex payload
203
204 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1999**  (%%) ~/~/ Set UDP server address and port
205
206 [[image:image-20240819102802-1.png]]
207
208 ==== 3.1.2.2 Uplink Example ====
209
210 [[image:image-20240819105418-8.png||height="671" width="1414"]]
211
212 == 3.2 General COAP Connection ==
213
214 The NB-IoT Sensor can send packet to server use COAP protocol.
215
216 Below are the commands.
217
218 (% style="color:blue" %)**AT Commands:**
219
220 * (% style="color:#037691" %)**AT+PRO=1,0**   (%%) ~/~/ Set to use COAP protocol to uplink, Payload Type select Hex payload.
221
222 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683** (%%) ~/~/ Set COAP server address and port
223
224 * (% style="color:#037691" %)**AT+URI1=11,"I"**  (%%) ~/~/  Configure CoAP Message Options
225 * (% style="color:#037691" %)**AT+URI2=11,"aaa05e26-4d6d-f01b-660e-1d8de4a3bfe1"**    (%%) ~/~/ Configure CoAP Message Options
226
227 [[image:image-20240819103212-2.png]]
228
229 === 3.2.1 Uplink Example ===
230
231 [[image:image-20240819103909-4.png||height="453" width="955"]]
232
233
234 == 3.2 General MQTT Connection ==
235
236 The NB-IoT Sensor can send packet to server use MQTT protocol.
237
238 Below are the commands.
239
240 (% style="color:blue" %)**AT Commands:**
241
242 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/ Set to use MQTT protocol to uplink, Payload Type select Hex payload.
243
244 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/ Set MQTT server address and port
245
246 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/ Set up the CLIENT of MQTT
247
248 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/ Set the username of MQTT
249
250 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/ Set the password of MQTT
251
252 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/ Set the sending topic of MQTT
253
254 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/ Set the subscription topic of MQTT
255
256 [[image:image-20240819105003-7.png||height="613" width="458"]]
257
258
259 [[image:image-20240819104942-6.png||height="702" width="974"]]
260
261 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.**
262
263 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
264
265 === 3.3.1 Get MQTT Credentials ===
266
267 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
268
269 [[image:image-20240819173602-1.png||height="401" width="743"]]
270
271 [[image:image-20240819173706-3.png||height="595" width="597"]]
272
273 === 3.3.2 Simulate with MQTT.fx ===
274
275 ==== 3.3.2.1 Establish MQTT Connection ====
276
277 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
278
279 [[image:image-20240819173826-4.png||height="534" width="734"]]
280
281 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
282
283 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
284
285 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
286
287 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
288
289 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
290
291 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
292
293 [[image:image-20240819174033-5.png]]
294
295 [[image:image-20240819174209-6.png]]
296
297 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
298
299 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
300
301 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
302
303 Where 63 and 67 are the value to be published to field1 & field2.
304
305 (% style="color:blue" %)**Result: **
306
307 [[image:image-20240819174314-7.png||height="469" width="785"]]
308
309 === 3.3.3 Configure NB-IoT Sensor for connection ===
310
311 ==== 3.3.3.1 AT Commands: ====
312
313 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
314
315 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
316
317 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
318
319 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
320
321 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
322
323 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
324
325 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
326
327 ==== 3.3.3.2 Uplink Examples ====
328
329 [[image:image-20240819174540-8.png]]
330
331 For SE01-NB
332
333 For DDS20-NB
334
335 For DDS45-NB
336
337 For DDS75-NB
338
339 For NMDS120-NB
340
341 For SPH01-NB
342
343 For NLM01-NB
344
345 For NMDS200-NB
346
347 For CPN01-NB
348
349 For DS03A-NB
350
351 For SN50V3-NB
352
353 ==== 3.3.3.3 Map fields to sensor value ====
354
355 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
356
357 [[image:image-20240819174610-9.png]]
358
359 [[image:image-20240819174618-10.png]]
360
361 Below is the NB-IoT Product Table show the mapping.
362
363 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
364 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
365 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
366 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
367 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
368 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
369 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
370 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
371 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
372 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
373 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
374 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
375 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
376 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
377 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
378 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
379 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
380 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
381 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
382
383 == 3.4 [[Datacake>>https://datacake.co/]] ==
384
385 (% class="wikigeneratedid" %)
386 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
387
388 (% class="wikigeneratedid" %)
389 As example for S31B-CB. there are two versions: **S31B-CB-1D and S31B-CB-GE.**
390
391 * (% style="color:blue" %)**S31B-CB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
392
393 * (% style="color:blue" %)**S31B-CB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
394
395 === 3.4.1 For device Already has template ===
396
397 ==== 3.4.1.1 Create Device ====
398
399 (% style="color:blue" %)**Add Device**(%%) in DataCake.
400
401 [[image:image-20240820110003-1.png]]
402
403 [[image:image-20240820110017-2.png]]
404
405 (% style="color:blue" %)**Choose the correct model**(%%) from template.
406
407 [[image:image-20240820110031-3.png]]
408
409 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
410
411 [[image:image-20240820110048-4.png]]
412
413 [[image:image-20240820110103-5.png]]
414
415 [[image:image-20240820110114-6.png]]
416
417 === 3.4.2 For Device already registered in DataCake before shipped ===
418
419 ==== 3.4.2.1 Scan QR Code to get the device info ====
420
421 Users can use their phones or computers to scan QR codes to obtain device data information.
422
423 [[image:image-20240820110129-7.png]]
424
425 [[image:image-20240820110218-9.png]]
426
427 ==== 3.4.2.2 Claim Device to User Account ====
428
429 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
430
431 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
432
433 **Step1: Add a device**
434
435 [[image:image-20240820110235-10.png]][[image:image-20240129170024-1.png||height="330" width="900"]]
436
437 **Step2: Choose your device type,please select dragino NB-IOT device**
438
439 [[image:image-20240820110247-11.png]]
440
441 **Step3: Choose to create a new device**
442
443 [[image:image-20240820111016-12.png]]
444
445 **Step4: Fill in the device ID of your NB device**
446
447 [[image:image-20240820111101-13.png]]
448
449 **Step5: Please select your device plan according to your needs and complete the creation of the device**
450
451 [[image:image-20240820111113-14.png]]
452
453 **Step6: Please add the decoder at the payload decoder of the device configuration.**
454
455 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
456
457 [[image:image-20240820111236-15.png]]
458
459 [[image:image-20240820111248-16.png]]
460
461 **Step7: Add the output of the decoder as a field**
462
463 [[image:image-20240820111259-17.png]]
464
465 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
466
467 [[image:image-20240820111312-18.png]]
468
469 [[image:image-20240820111322-19.png]]
470
471 [[image:image-20240820111333-20.png]]
472
473 === 3.4.4 For device have not configured to connect to DataCake ===
474
475 (% class="lead" %)
476 Use AT command for connecting to DataCake
477
478 (% style="color:blue" %)**AT+PRO=2,0**
479
480 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
481
482 == 3.5 Node-Red (via MQTT) ==
483
484 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
485
486 Take S31-NB UDP protocol as an example.
487
488 Dragino provides input flow examples for the sensors.
489
490 User can download the required JSON file through Dragino Node-RED input flow template.
491
492 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
493
494 We can directly import the template.
495
496 The templates for S31-NB and NB95S31B are the same.
497
498 [[image:image-20240820111353-21.png]]
499
500 Please select the NB95S31B template.
501
502 [[image:image-20240820111405-22.png]]
503
504 [[image:image-20240820111418-23.png]]
505
506 [[image:image-20240820111427-24.png]]
507
508 Successfully imported template.
509
510 [[image:image-20240820111438-25.png]]
511
512 Users can set UDP port.
513
514 [[image:image-20240820111448-26.png]]
515
516 === 3.5.2 Simulate Connection ===
517
518 We have completed the configuration of UDP. We can try sending packets to node red.
519
520 [[image:image-20240820111504-27.png]]
521
522 [[image:image-20240820111515-28.png]]
523
524 === 3.5.3 Configure NB-IoT Sensors ===
525
526 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
527 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
528 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
529 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
530 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
531 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
532
533 == 3.6 ThingsBoard.Cloud (via MQTT) ==
534
535 === 3.6.1 Configure ThingsBoard ===
536
537 ==== 3.6.1.1 Create Device ====
538
539 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
540
541 [[image:image-20240820112210-29.png]]
542
543 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
544
545 (% style="color:blue" %)**Uplink Converter**
546
547 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
548
549 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
550
551 [[image:image-20240820112222-30.png]]
552
553 (% style="color:blue" %)**Downlink Converter**
554
555 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
556
557 [[image:image-20240820112236-31.png]]
558
559 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
560
561 ==== 3.6.1.3 MQTT Integration Setup ====
562
563 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
564
565 [[image:image-20240820112247-32.png]]
566
567 * The next steps is to add the recently created uplink and downlink converters;
568
569 [[image:image-20240820112302-33.png]]
570
571 [[image:image-20240820112316-34.png]]
572
573 (% style="color:blue" %)**Add a topic filter:**
574
575 Consistent with the theme of the node setting.
576
577 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
578
579 [[image:image-20240820112330-35.png]]
580
581 === 3.6.2 Simulate with MQTT.fx ===
582
583 [[image:image-20240820112340-36.png]]
584
585 [[image:image-20240820112351-37.png]]
586
587 === 3.6.3 Configure NB-IoT Sensor ===
588
589 (% style="color:blue" %)**AT Commands**
590
591 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
592
593 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
594
595 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
596
597 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
598
599 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
600
601 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
602
603 Test Uplink by click the button for 1 second
604
605 [[image:image-20240820112404-38.png]]
606
607 [[image:image-20240820112416-39.png]]
608
609 [[image:image-20240820112426-40.png]]
610
611 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
612
613 === 3.7.1 Create device & Get Credentials ===
614
615 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
616
617 [[image:image-20240820112516-41.png]]
618
619 [[image:image-20240820112526-42.png]]
620
621 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
622
623 [[image:image-20240820112539-43.png]]
624
625 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
626
627 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
628
629 * (% style="color:#037691" %)**Profile Name: “Any name”**
630
631 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
632
633 * (% style="color:#037691" %)**Broker Port: 8883**
634
635 * (% style="color:#037691" %)**Client ID: “Any value”**
636
637 (% style="color:blue" %)**On the section User credentials, set the following information:**
638
639 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
640
641 * (% style="color:#037691" %)**Password: “Your device token”**
642
643 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
644
645 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
646
647 (% style="color:blue" %)**AT command:**
648
649 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
650
651 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
652
653 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
654
655 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
656
657 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
658
659 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
660
661 === 3.7.2 Simulate with MQTT.fx ===
662
663 [[image:image-20240820112552-44.png]]
664
665 [[image:image-20240820112604-45.png]]
666
667 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
668
669 [[image:image-20240820112615-46.png]]
670
671 [[image:image-20240820112626-47.png]]
672
673 === 3.7.3 tago data ===
674
675 [[image:image-20240820112637-48.png]]
676
677 [[image:image-20240820112647-49.png]]
678
679 == 3.8 TCP Connection ==
680
681 (% style="color:blue" %)**AT command:**
682
683 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
684
685 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
686
687 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
688
689 (% style="color:blue" %)**Sensor Console Output when Uplink:**
690
691 [[image:image-20240820112704-50.png]]
692
693 (% style="color:blue" %)**See result in TCP Server:**
694
695 [[image:image-20240820112716-51.png]]
696
697 == 3.9 AWS Connection ==
698
699 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
700
701 = =
702
703 = 4. COAP/UDP/MQTT/TCP downlink =
704
705 == 4.1 MQTT (via MQTT.fx) ==
706
707 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
708
709 **1.** Configure node MQTT connection (via MQTT.fx):
710
711 (% style="color:blue" %)**AT command:**
712
713 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
714
715 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
716
717 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
718
719 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
720
721 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
722
723 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
724
725 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
726
727 [[image:image-20240820112732-52.png]][[image:image-20240820112758-53.png]]
728
729 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
730
731 [[image:image-20240820112813-54.png]]
732
733 **3. **The downlink command can be successfully sent only when the downlink port is open.
734
735 The downlink port is opened for about 3 seconds after uplink packets are sent.
736
737 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
738
739 [[image:image-20240820112824-55.png]]
740
741 [[image:image-20240820112835-56.png]]
742
743 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
744
745
746 == 4.2 UDP (via Thingseye) ==
747
748 (% style="color:red" %)**Note:**(%%) The UDP service on the ThingsEye platform needs to be built by the user. (Description Link:[[UDP service building instructions>>http://www.ithingsboard.com/docs/user-guide/integrations/udp/]])
749
750 After the node is successfully connected to the platform, you need to select the corresponding node (you can refer to the node's IMEI to find it)
751
752 [[image:image-20240820141843-2.png||height="546" width="821"]]
753
754 After clicking Show Node Details Page, (% style="color:blue" %)**Select Properties ~-~-- select Shared Properties ~-~-- click Add Properties**
755
756 [[image:image-20240820143316-3.png||height="555" width="1170"]]
757
758 After clicking Add Shared Attribute, set the key to (% style="color:red" %)**value**(%%), and write the command that needs to be downlinked in the Downlink Command Input box
759
760 (% style="color:red" %)**(Note: Downlinks can only be downlinked in string format, otherwise the node will not recognize the downlink command.)**
761
762 [[image:image-20240820143820-4.png||height="554" width="1168"]]
763
764 After the command is successfully added, the platform will send the command down on the node's next uplink.
765
766 [[image:image-20240820144913-6.png||height="585" width="1232"]]
767
768 [[image:image-20240820145133-7.png||height="582" width="1227"]]
769
770 Upon successful issuance, the platform automatically eliminates the attributes from the queue and waits for the next addition of new attributes
771
772 [[image:image-20240820145309-8.png]]
773
774
775 = 5. GPS positioning function =
776
777 === 1. Turn on GPS function ===
778
779 (% class="wikigeneratedid" %)
780 AT+GPS=1 or 0  ~/~/GPS function on or off
781
782
783 === 2.Extend the time to turn on GNSS ===
784
785 AT+GNSST=30  ~/~/GPS search for positioning information for 30 seconds
786
787
788 === 3.Get or set GPS positioning interval in units of hour ===
789
790 AT+GTDC=24  ~/~/The device will activate GPS positioning every 24 hours
791
792
793 = 5. FAQ =
794
795 == 5.1 What is the usage of Multi Sampling and One Uplink? ==
796
797 The NB series has the feature for Multi Sampling and one uplink. See one of them
798
799 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
800
801 User can use this feature for below purpose:
802
803 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
804 1. Give more sampling data points.
805 1. Increase reliable in transmission. For example. If user set
806 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
807 1*. **AT+NOUD=24** ~/~/ The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
808 1*. **AT+TDC=7200** ~/~/ Uplink every 2 hours.
809 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
810
811 == 5.2 Why the uplink JSON format is not standard? ==
812
813 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
814
815 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
816
817 [[image:image-20240820112848-57.png]]
818
819 = 6. Trouble Shooting: =
820
821 == 6.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
822
823 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
824
825 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
826
827 [[image:image-20240820112859-58.png]]
828
829 If fail to attach network, it will shows signal 99. as below:
830
831 [[image:image-20240820112908-59.png]]
832
833 (% class="lead" %)
834 When see this issue, below are the checklist:
835
836 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
837 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
838 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
839 * Check if the device is attached to Carrier network but reject. (need to check with operator).
840 * Check if the antenna is connected firmly.
841
842 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
843
844
845 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.2 Why sometime the AT Command is slow in reponse?(%%) ==
846
847 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
848
849 [[image:image-20240820113015-60.png]]
850
851 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.3 What is the Downlink Command by the -CB device?(%%) ==
852
853 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
854 === UDP: ===
855
856 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
857 Its downlink command is the same as the AT command, but brackets are required.
858 Example:
859
860 {AT+TDC=300}
861
862 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
863 === MQTT: ===
864
865 Json:
866
867 The Json format in MQTT mode needs to be configured with all commands.
868 If you have configurations that need to be changed, please change them in the template below.
869 Template:
870
871 {
872 "AT+SERVADDR":"119.91.62.30,1882",
873 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
874 "AT+UNAME":"usenamedragino",
875 "AT+PWD":"passworddragino",
876 "AT+PUBTOPIC":"123",
877 "AT+SUBTOPIC":"321",
878 "AT+TDC":"7200",
879 "AT+INTMOD":"0",
880 "AT+APN":"NULL",
881 "AT+5VT":"0",
882 "AT+PRO":"3,5",
883 "AT+TR":"900",
884 "AT+NOUD":"0",
885 "AT+CSQTIME":"5",
886 "AT+DNSTIMER":"0",
887 "AT+TLSMOD":"0,0",
888 "AT+MQOS":"0",
889 "AT+TEMPALARM1":"0",
890 "AT+TEMPALARM2":"10",
891 "AT+TEMPALARM3":"0"
892 }
893
894 Hex:
895
896 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
897
898 The supported commands are consistent with LoRaWAN's hex commands.
899 Please refer to the following link to obtain the hex format:
900
901 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
902
903
904 == 6.4 What if the signal is good but the domain name resolution fails? ==
905
906
907 If the domain name resolution fails, first check whether the domain name is correct, users can use their own website domain name resolution tool to verify the domain name.
908
909 [[image:image-20240827150705-6.png||height="489" width="687"]]
910
911 If the domain name is correct, but the domain name cannot be resolved, the user can turn off the domain name resolution function(AT+GDNS=1) and use the domain name communication directly.
912
913 * Set the DNS
914
915 (% style="color:blue" %)**AT Command: AT+GDNS**
916
917 **AT+GDNS=0**  ~/~/Default. Automatically resolves the domain name and uses the resolved IP to communicate.
918
919 **AT+GDNS=1    **~/~/Disabling Domain name resolution. Use the domain name directly to communicate.
920
921 (% style="color:red" %)**Note: For -CB products, with the exception of AT+PRO=2,5, all protocols and payload formats support direct domain communication.**
922
923 Example:
924
925 [[image:image-20240827150121-5.png||height="476" width="680"]][[image:image-20240827145055-4.png||height="484" width="678"]]
926
927
928 == 6.5 GPS debugging ==
929
930
931 Indoor GPS signal is very weak, **outdoor** positioning is generally recommended.
932
933 [[image:image-20240903100832-4.png||height="268" width="580"]]
934
935
936 === 6.5.1 GPS commands ===
937
938
939 The following are three related AT commands that introduce GPS functions.
940
941 * **Turn on/off GPS**
942
943 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS **
944
945 **Ex1:  **AT+GPS=0  ~/~/ Turn off GPS
946
947 **Ex2:  **AT+GPS=1  ~/~/ Turn on GPS
948
949 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)**
950
951 Format: Command Code (0x11) followed by 1 byte.
952
953 Example:  Downlink Payload: **11 01   **~/~/ AT+GPS=1
954
955 * **Set GNSS open time**
956
957 Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.
958
959 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST**
960
961 Example: AT+GNSST=30  ~/~/ Set the GPS positioning time to 30 seconds
962
963 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)**
964
965 Format: Command Code (0x10) followed by 2 bytes.
966
967 Example:  Downlink Payload: **10 00 1E    **~/~/ AT+GNSST=30
968
969 * **Set GPS positioning interval**
970
971 Feature: Set GPS positioning interval (unit: hour).
972
973 When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation.
974
975 (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC**
976
977 Example: AT+GTDC=24  ~/~/ Set the GPS positioning interval to 24h.
978
979 (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)**
980
981 Format: Command Code (0x12) followed by 3 bytes.
982
983 Example: 24 hours:  24(D)=0x18(H)
984
985 Downlink Payload: **12 00 00 18   **~/~/ AT+GTDC=24
986
987
988 === 6.5.2 GPS workflow ===
989
990
991 The whole working process after the GPS function is enabled((% style="color:#037691" %)**AT+GPS=1**(%%)) is as follows:
992
993 ~1. When activate the node, the node will turn on the GNSS, if the GPS signal is good, the node will print and upload the position information with the first data packet immediately.
994
995 If the signal is not good, it may take the whole (% style="color:#037691" %)**GNSST**(%%) time but still can not search the latitude and longitude information, at this time the node uploads the latitude and longitude all to 0.
996
997 So if there is a failure of positioning, the user can extend the (% style="color:#037691" %)**GNSST**(%%) time appropriately.
998
999 2. Each TDC time node is not repositioned and the positioning interval is determined by the AT+GTDC time.
1000
1001 The latitude and longitude payload uplinked at each TDC time is the GPS positioning information from the previous (% style="color:#037691" %)**GTDC**(%%) time.
1002
1003 Only when the node is activated or every (% style="color:#037691" %)**GTDC**(%%) time is reached, the node turns on the GNSS and we can observe the GPS search information through the serial assistant or Bluetooth tool.
1004
1005
1006 === 6.5.3 GPS debugging methods ===
1007
1008
1009 In summary, we can deduce the method of debugging GPS:
1010
1011 * **Check whether the GPS antenna is loose**.
1012
1013 If the GPS antenna is loose, the GPS signal is weak, and the positioning fails.
1014
1015 [[image:image-20240903094214-1.png||height="340" width="461"]]
1016
1017 * **Use the AT+GNSST command to extend the positioning time.**
1018
1019 The default AT+GNSST=30, that is, the default positioning time is 30 seconds.
1020
1021 If the location fails, users can extend the location time.
1022
1023
1024
1025
1026
1027
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0