Show last authors
1 (% class="wikigeneratedid" id="HTableofContents:" %)
2 **Table of Contents:**
3
4 {{toc/}}
5
6
7 = 1. The use of this guideline =
8
9
10 This configure instruction is for Dragino NB-IoT models with -NB or -NS suffix, for example DDS75-NB. These models use the same NB-IoT Module **[[BC660K-GL>>https://www.quectel.com/product/lpwa-bc660k-gl-nb2]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
11
12
13 = 2. Attach Network =
14
15
16 To attache NB-IoT sensors to NB-IoT Network, You need to:
17
18 1. Get a NB-IoT SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
19 1. Insert the SIM card to Sensor
20 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (% class="mark" %)(补充 APN 指令(%%))
21
22 [[image:image-20230808205045-1.png||height="293" width="438"]]
23
24 After doing above, the NB-IoT Sensors should be able to attach to NB-IoT network .
25
26 The -NB and -NS models support (% style="color:blue" %)**LTE Cat NB2**(%%), with below frequency band: multiple frequency bands of (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85**(%%) . Make sure you use a the NB-IoT SIM card.
27
28 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:878px" %)
29 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**APN**|(% style="background-color:#4f81bd; color:white; width:474px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Comments**
30 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:474px" %)(((
31 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
32
33 Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Finland, Germany, Great Britain, Greece, Hungary, Ireland, Italy, Latvia, Malta, Netherlands, Norway, Puerto Rico, Russia, Slovak , Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
34 )))|(% style="width:135px" %)
35 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:474px" %)China Mainland, HongKong|(% style="width:135px" %)
36 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:474px" %)China Mainland|(% style="width:135px" %)
37
38 = 3. Configure to connect to different servers =
39
40 == 3.1 General UDP Connection ==
41
42
43 The NB-IoT Sensor can send packet to server use UDP protocol.
44
45
46 === 3.1.1 Simulate UDP Connection by PC tool ===
47
48
49 We can use PC tool to simulate UDP connection to make sure server works ok.
50
51 [[image:image-20230802112413-1.png]]
52
53
54 === 3.1.2 Configure NB-IoT Sensor ===
55
56 ==== 3.1.2.1 AT Commands ====
57
58
59 (% style="color:blue" %)**AT Commands:**
60
61 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/  Set to use UDP protocol to uplink ,Payload Type select Hex payload
62
63 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/  Set UDP server address and port
64
65 * (% style="color:#037691" %)**AT+CFM=1**    (%%) ~/~/  If the server does not respond, this command is unnecessary
66
67 [[image:image-20230802112413-2.png]]
68
69
70 ==== 3.1.2.2 Uplink Example ====
71
72
73 [[image:image-20230802112413-3.png]]
74
75
76 == 3.2 General MQTT Connection ==
77
78
79 The NB-IoT Sensor can send packet to server use MQTT protocol.
80
81 Below are the commands.
82
83 (% style="color:blue" %)**AT Commands:**
84
85 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/  Set to use MQTT protocol to uplink, Payload Type select Hex payload.
86
87 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/  Set MQTT server address and port
88
89 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/  Set up the CLIENT of MQTT
90
91 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/  Set the username of MQTT
92
93 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/  Set the password of MQTT
94
95 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/  Set the sending topic of MQTT
96
97 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/  Set the subscription topic of MQTT
98
99 [[image:image-20230802112413-4.png]]
100
101 [[image:image-20230802112413-5.png]]
102
103 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink  period to a suitable interval.**
104
105
106 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
107
108 === 3.3.1 Get MQTT Credentials ===
109
110
111 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
112
113 [[image:image-20230802112413-6.png]]
114
115 [[image:image-20230802112413-7.png]]
116
117
118 === 3.3.2 Simulate with MQTT.fx ===
119
120 ==== 3.3.2.1 Establish MQTT Connection ====
121
122
123 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
124
125 [[image:image-20230802112413-8.png]]
126
127 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
128
129 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
130
131 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
132
133 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
134
135 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
136
137 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
138
139
140 [[image:image-20230802112413-9.png]]
141
142 [[image:image-20230802112413-10.png]]
143
144
145 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
146
147 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
148
149 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
150
151 Where 63 and 67 are the value to be published to field1 & field2.
152
153
154 (% style="color:blue" %)**Result: **
155
156 [[image:image-20230802112413-11.png]]
157
158
159 === 3.3.3 Configure NB-IoT Sensor for connection ===
160
161 ==== 3.3.3.1 AT Commands: ====
162
163
164 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
165
166 * (% style="color:blue" %)**AT+PRO=3,1** (%%) **~/~/ Set to use ThingSpeak Server and Related Payload**
167
168 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
169
170 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
171
172 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
173
174 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
175
176 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
177
178 ==== 3.3.3.2 Uplink Examples ====
179
180
181 For S31-NB
182
183 For SE01-NB
184
185 For DDS20-NB
186
187 For DDS45-NB
188
189 For DDS75-NB
190
191 For NMDS120-NB
192
193 For SPH01-NB
194
195 For NLM01-NB
196
197 For NMDS200-NB
198
199 For CPN01-NB
200
201 For DS03A-NB
202
203 For SN50V3-NB
204
205
206 ==== 3.3.3.3 Map fields to sensor value ====
207
208
209 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
210
211
212 [[image:image-20230802112413-12.png]]
213
214 [[image:image-20230802112413-13.png]]
215
216
217 Below is the NB-IoT Product Table show the mapping.
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
220 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
221 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
222 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
223 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
224 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
225 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
226 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
227 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
228 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
229 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
230 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
231 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
232 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
233 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
234 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
235 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
236 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
237 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
238
239 == 3.4 Datacake ==
240
241 === 3.4.1 Create device ===
242
243
244 [[image:image-20230808162301-1.png]]
245
246
247 [[image:image-20230808162342-2.png]]
248
249
250 [[image:image-20230808162421-3.png]]
251
252
253 The device ID needs to be filled in with IMEI, and a prefix of** 'f' **needs to be added.
254
255 [[image:image-20230808163612-7.png]]
256
257 [[image:image-20230808163035-5.png]]
258
259 [[image:image-20230808163049-6.png]]
260
261
262 === 3.4.2 Scan QR code to obtain data ===
263
264
265 Users can use their phones or computers to scan QR codes to obtain device data information.
266
267 [[image:image-20230808170051-8.png]]
268
269 [[image:image-20230808170548-9.png]]
270
271
272 === 3.4.2 AT command for connecting to DataCake ===
273
274
275 (% style="color:blue" %)**AT+PRO=2,0**
276
277 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
278
279
280 == 3.5 Node-Red (via MQTT) ==
281
282 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
283
284
285 Take S31-NB UDP protocol as an example.
286
287 Dragino provides input flow examples for the sensors.
288
289 User can download the required JSON file through Dragino Node-RED input flow template.
290
291 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
292
293 We can directly import the template.
294
295 The templates for S31-NB and NB95S31B are the same.
296
297
298 [[image:image-20230809173127-4.png]]
299
300 Please select the NB95S31B template.
301
302 [[image:image-20230809173310-5.png]]
303
304 [[image:image-20230809173438-6.png]]
305
306 [[image:image-20230809173800-7.png]]
307
308 Successfully imported template.
309
310 [[image:image-20230809173835-8.png]]
311
312
313 Users can set UDP port.
314
315 [[image:image-20230809174053-9.png]]
316
317 === 3.5.2 Simulate Connection ===
318
319 We have completed the configuration of UDP. We can try sending packets to node red.
320
321 [[image:image-20230810083934-1.png]]
322
323 [[image:image-20230810084048-2.png]]
324
325 === 3.5.3 Configure NB-IoT Sensors ===
326
327
328 * (% style="color:blue" %)**AT+PRO=2,0(hex format) or 2,1(json format)**(%%)    **~/~/  Set to UDP Server and  Payload**
329
330 * **AT+SERVADDR=xx.xx.xx.xx,port   ** **~/~/  Set Server IP and  port**
331
332 == 3.6 ThingsBoard.Cloud (via MQTT) ==
333
334 === 3.6.1 Configure ThingsBoard ===
335
336 ==== 3.6.1.1 Create Device ====
337
338
339 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
340
341 [[image:image-20230802112413-32.png]]
342
343
344 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
345
346
347 (% style="color:blue" %)**Uplink Converter**
348
349 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
350
351 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
352
353 [[image:image-20230802112413-33.png||height="732" width="1302"]]
354
355
356 (% style="color:blue" %)**Downlink Converter**
357
358 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
359
360 [[image:image-20230802112413-34.png||height="734" width="1305"]]
361
362 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
363
364
365 ==== 3.6.1.3 MQTT Integration Setup ====
366
367
368 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
369
370 [[image:image-20230802112413-35.png||height="738" width="1312"]]
371
372
373 * The next steps is to add the recently created uplink and downlink converters;
374
375 [[image:image-20230802112413-36.png||height="736" width="1308"]]
376
377 [[image:image-20230802112413-37.png||height="735" width="1307"]]
378
379
380 (% style="color:blue" %)**Add a topic filter:**
381
382 tb/mqtt-integration-tutorial/sensors~/~/temperature ~-~-> Temperature  **固定的? 对的。**
383
384 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
385
386 [[image:image-20230802112413-38.png||height="731" width="1300"]]
387
388
389 === 3.6.2 Simulate with MQTT.fx ===
390
391
392 [[image:image-20230802112413-39.png]]
393
394 [[image:image-20230802112413-40.png]]
395
396
397 === 3.6.3 Configure NB-IoT Sensor ===
398
399
400 (% style="color:blue" %)**AT Commands**
401
402 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
403
404 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
405
406 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
407
408 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
409
410 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
411
412 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
413
414 Test Uplink by click the button for 1 second
415
416 [[image:image-20230802112413-41.png]]
417
418 [[image:image-20230802112413-42.png]]
419
420 [[image:image-20230802112413-43.png]]
421
422
423 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
424
425 === 3.7.1 Create device & Get Credentials ===
426
427
428 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
429
430 [[image:image-20230802112413-44.png]]
431
432 [[image:image-20230802112413-45.png]]
433
434
435 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
436
437 [[image:image-20230802112413-46.png]]
438
439
440 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
441
442 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
443
444 * (% style="color:#037691" %)**Profile Name: “Any name”**
445
446 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
447
448 * (% style="color:#037691" %)**Broker Port: 8883**
449
450 * (% style="color:#037691" %)**Client ID: “Any value”**
451
452 (% style="color:blue" %)**On the section User credentials, set the following information:**
453
454 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
455
456 * (% style="color:#037691" %)**Password: “Your device token”**
457
458 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
459
460 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
461
462 (% style="color:blue" %)**AT command:**
463
464 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
465
466 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
467
468 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
469
470 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
471
472 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
473
474 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
475
476 === 3.7.2 Simulate with MQTT.fx ===
477
478 [[image:image-20230802112413-52.png]]
479
480
481 [[image:image-20230808105300-2.png]]
482
483 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
484
485 [[image:image-20230808105217-1.png]]
486
487 [[image:image-20230808105329-3.png]]
488
489
490 === 3.7.3 tago data ===
491
492
493 [[image:image-20230802112413-50.png]]
494
495 [[image:image-20230802112413-51.png||height="184" width="696"]]
496
497
498
499 == 3.8 TCP Connection ==
500
501
502 (% style="color:blue" %)**AT command:**
503
504 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
505
506 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
507
508 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
509
510 (% style="color:blue" %)**Sensor Console Output when Uplink:**
511
512 [[image:image-20230807233631-1.png]]
513
514
515 (% style="color:blue" %)**See result in TCP Server:**
516
517 [[image:image-20230807233631-2.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0