Show last authors
1 (% class="wikigeneratedid" id="HTableofContents:" %)
2 **Table of Contents:**
3
4 {{toc/}}
5
6
7 = 1. The use of this guideline =
8
9
10 This configure instruction is for Dragino NB-IoT models with -NB or -NS suffix, for example DDS75-NB. These models use the same NB-IoT Module **[[BC660K-GL>>https://www.quectel.com/product/lpwa-bc660k-gl-nb2]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
11
12
13 = 2. Attach Network =
14
15
16 To attache NB-IoT sensors to NB-IoT Network, You need to:
17
18 1. Get a NB-IoT SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
19 1. Insert the SIM card to Sensor
20 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (% class="mark" %)(补充 APN 指令(%%))
21
22 [[image:image-20230808205045-1.png||height="293" width="438"]]
23
24 After doing above, the NB-IoT Sensors should be able to attach to NB-IoT network .
25
26 The -NB and -NS models support (% style="color:blue" %)**LTE Cat NB2**(%%), with below frequency band: multiple frequency bands of (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85**(%%) . Make sure you use a the NB-IoT SIM card.
27
28 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:878px" %)
29 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**APN**|(% style="background-color:#4f81bd; color:white; width:474px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Comments**
30 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:474px" %)(((
31 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
32
33 Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Finland, Germany, Great Britain, Greece, Hungary, Ireland, Italy, Latvia, Malta, Netherlands, Norway, Puerto Rico, Russia, Slovak , Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
34 )))|(% style="width:135px" %)
35 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:474px" %)China Mainland, HongKong|(% style="width:135px" %)
36 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:474px" %)China Mainland|(% style="width:135px" %)
37
38 = 3. Configure to connect to different servers =
39
40 == 3.1 General UDP Connection ==
41
42
43 The NB-IoT Sensor can send packet to server use UDP protocol.
44
45
46 === 3.1.1 Simulate UDP Connection by PC tool ===
47
48
49 We can use PC tool to simulate UDP connection to make sure server works ok.
50
51 [[image:image-20230802112413-1.png]]
52
53
54 === 3.1.2 Configure NB-IoT Sensor ===
55
56 ==== 3.1.2.1 AT Commands ====
57
58
59 (% style="color:blue" %)**AT Commands:**
60
61 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/  Set to use UDP protocol to uplink ,Payload Type select Hex payload
62
63 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/  Set UDP server address and port
64
65 * (% style="color:#037691" %)**AT+CFM=1**    (%%) ~/~/  If the server does not respond, this command is unnecessary
66
67 [[image:image-20230802112413-2.png]]
68
69
70 ==== 3.1.2.2 Uplink Example ====
71
72
73 [[image:image-20230802112413-3.png]]
74
75
76 == 3.2 General MQTT Connection ==
77
78
79 The NB-IoT Sensor can send packet to server use MQTT protocol.
80
81 Below are the commands.
82
83 (% style="color:blue" %)**AT Commands:**
84
85 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/  Set to use MQTT protocol to uplink, Payload Type select Hex payload.
86
87 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/  Set MQTT server address and port
88
89 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/  Set up the CLIENT of MQTT
90
91 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/  Set the username of MQTT
92
93 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/  Set the password of MQTT
94
95 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/  Set the sending topic of MQTT
96
97 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/  Set the subscription topic of MQTT
98
99 [[image:image-20230802112413-4.png]]
100
101 [[image:image-20230802112413-5.png]]
102
103 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink  period to a suitable interval.**
104
105
106 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
107
108 === 3.3.1 Get MQTT Credentials ===
109
110
111 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
112
113 [[image:image-20230802112413-6.png]]
114
115 [[image:image-20230802112413-7.png]]
116
117
118 === 3.3.2 Simulate with MQTT.fx ===
119
120 ==== 3.3.2.1 Establish MQTT Connection ====
121
122
123 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
124
125 [[image:image-20230802112413-8.png]]
126
127 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
128
129 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
130
131 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
132
133 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
134
135 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
136
137 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
138
139
140 [[image:image-20230802112413-9.png]]
141
142 [[image:image-20230802112413-10.png]]
143
144
145 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
146
147 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
148
149 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
150
151 Where 63 and 67 are the value to be published to field1 & field2.
152
153
154 (% style="color:blue" %)**Result: **
155
156 [[image:image-20230802112413-11.png]]
157
158
159 === 3.3.3 Configure NB-IoT Sensor for connection ===
160
161 ==== 3.3.3.1 AT Commands: ====
162
163
164 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
165
166 * (% style="color:blue" %)**AT+PRO=3,1** (%%) **~/~/ Set to use ThingSpeak Server and Related Payload**
167
168 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
169
170 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
171
172 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
173
174 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
175
176 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
177
178 ==== 3.3.3.2 Uplink Examples ====
179
180
181 For S31-NB
182
183 For SE01-NB
184
185 For DDS20-NB
186
187 For DDS45-NB
188
189 For DDS75-NB
190
191 For NMDS120-NB
192
193 For SPH01-NB
194
195 For NLM01-NB
196
197 For NMDS200-NB
198
199 For CPN01-NB
200
201 For DS03A-NB
202
203 For SN50V3-NB
204
205
206 ==== 3.3.3.3 Map fields to sensor value ====
207
208
209 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
210
211
212 [[image:image-20230802112413-12.png]]
213
214 [[image:image-20230802112413-13.png]]
215
216
217 Below is the NB-IoT Product Table show the mapping.
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
220 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
221 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
222 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
223 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
224 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
225 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
226 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
227 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
228 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
229 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
230 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
231 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
232 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
233 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
234 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
235 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
236 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
237 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
238
239 == 3.4 Datacake ==
240
241 === 3.4.1 Create device ===
242
243
244 [[image:image-20230808162301-1.png]]
245
246
247 [[image:image-20230808162342-2.png]]
248
249
250 [[image:image-20230808162421-3.png]]
251
252
253 The device ID needs to be filled in with IMEI, and a prefix of** 'f' **needs to be added.
254
255 [[image:image-20230808163612-7.png]]
256
257 [[image:image-20230808163035-5.png]]
258
259 [[image:image-20230808163049-6.png]]
260
261
262 === 3.4.2 Scan QR code to obtain data ===
263
264
265 Users can use their phones or computers to scan QR codes to obtain device data information.
266
267 [[image:image-20230808170051-8.png]]
268
269 [[image:image-20230808170548-9.png]]
270
271
272 === 3.4.2 AT command for connecting to DataCake ===
273
274
275 (% style="color:blue" %)**AT+PRO=2,0**
276
277 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
278
279
280 == 3.5 Node-Red (via MQTT) ==
281
282 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
283
284
285 Take S31-NB UDP protocol as an example.
286
287 Dragino provides input flow examples for the sensors.
288
289 User can download the required JSON file through Dragino Node-RED input flow template.
290
291 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
292
293 We can directly import the template.
294
295 The templates for S31-NB and NB95S31B are the same.
296
297
298 [[image:image-20230809173127-4.png]]
299
300 Please select the NB95S31B template.
301
302 [[image:image-20230809173310-5.png]]
303
304 [[image:image-20230809173438-6.png]]
305
306 [[image:image-20230809173800-7.png]]
307
308 Successfully imported template.
309
310 [[image:image-20230809173835-8.png]]
311
312
313 Users can set UDP port.
314
315 [[image:image-20230809174053-9.png]]
316
317 === 3.5.2 Simulate Connection ===
318
319 We have completed the configuration of UDP. We can try sending packets to node red.
320
321 [[image:image-20230809180523-10.png]]
322
323
324 === 3.5.3 Configure NB-IoT Sensors ===
325
326
327 * (% style="color:blue" %)**AT+PRO=2,0(hex format) or 2,1(json format)**(%%)    **~/~/  Set to UDP Server and  Payload**
328
329 * **AT+SERVADDR=xx.xx.xx.xx,port   ** **~/~/  Set Server IP and  port**
330
331 == 3.6 ThingsBoard.Cloud (via MQTT) ==
332
333 === 3.6.1 Configure ThingsBoard ===
334
335 ==== 3.6.1.1 Create Device ====
336
337
338 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
339
340 [[image:image-20230802112413-32.png]]
341
342
343 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
344
345
346 (% style="color:blue" %)**Uplink Converter**
347
348 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
349
350 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
351
352 [[image:image-20230802112413-33.png||height="732" width="1302"]]
353
354
355 (% style="color:blue" %)**Downlink Converter**
356
357 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
358
359 [[image:image-20230802112413-34.png||height="734" width="1305"]]
360
361 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
362
363
364 ==== 3.6.1.3 MQTT Integration Setup ====
365
366
367 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
368
369 [[image:image-20230802112413-35.png||height="738" width="1312"]]
370
371
372 * The next steps is to add the recently created uplink and downlink converters;
373
374 [[image:image-20230802112413-36.png||height="736" width="1308"]]
375
376 [[image:image-20230802112413-37.png||height="735" width="1307"]]
377
378
379 (% style="color:blue" %)**Add a topic filter:**
380
381 tb/mqtt-integration-tutorial/sensors~/~/temperature ~-~-> Temperature  **固定的? 对的。**
382
383 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
384
385 [[image:image-20230802112413-38.png||height="731" width="1300"]]
386
387
388 === 3.6.2 Simulate with MQTT.fx ===
389
390
391 [[image:image-20230802112413-39.png]]
392
393 [[image:image-20230802112413-40.png]]
394
395
396 === 3.6.3 Configure NB-IoT Sensor ===
397
398
399 (% style="color:blue" %)**AT Commands**
400
401 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
402
403 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
404
405 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
406
407 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
408
409 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
410
411 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
412
413 Test Uplink by click the button for 1 second
414
415 [[image:image-20230802112413-41.png]]
416
417 [[image:image-20230802112413-42.png]]
418
419 [[image:image-20230802112413-43.png]]
420
421
422 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
423
424 === 3.7.1 Create device & Get Credentials ===
425
426
427 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
428
429 [[image:image-20230802112413-44.png]]
430
431 [[image:image-20230802112413-45.png]]
432
433
434 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
435
436 [[image:image-20230802112413-46.png]]
437
438
439 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
440
441 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
442
443 * (% style="color:#037691" %)**Profile Name: “Any name”**
444
445 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
446
447 * (% style="color:#037691" %)**Broker Port: 8883**
448
449 * (% style="color:#037691" %)**Client ID: “Any value”**
450
451 (% style="color:blue" %)**On the section User credentials, set the following information:**
452
453 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
454
455 * (% style="color:#037691" %)**Password: “Your device token”**
456
457 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
458
459 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
460
461 (% style="color:blue" %)**AT command:**
462
463 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
464
465 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
466
467 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
468
469 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
470
471 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
472
473 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
474
475 === 3.7.2 Simulate with MQTT.fx ===
476
477 [[image:image-20230802112413-52.png]]
478
479
480 [[image:image-20230808105300-2.png]]
481
482 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
483
484 [[image:image-20230808105217-1.png]]
485
486 [[image:image-20230808105329-3.png]]
487
488
489 === 3.7.3 tago data ===
490
491
492 [[image:image-20230802112413-50.png]]
493
494 [[image:image-20230802112413-51.png||height="184" width="696"]]
495
496
497
498 == 3.8 TCP Connection ==
499
500
501 (% style="color:blue" %)**AT command:**
502
503 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
504
505 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
506
507 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
508
509 (% style="color:blue" %)**Sensor Console Output when Uplink:**
510
511 [[image:image-20230807233631-1.png]]
512
513
514 (% style="color:blue" %)**See result in TCP Server:**
515
516 [[image:image-20230807233631-2.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0