Show last authors
1 (% class="wikigeneratedid" id="HTableofContents:" %)
2 **Table of Contents:**
3
4 {{toc/}}
5
6
7 = 1. The use of this guideline =
8
9
10 This configure instruction is for Dragino NB-IoT models with -NB or -NS suffix, for example DDS75-NB. These models use the same NB-IoT Module **[[BC660K-GL>>https://www.quectel.com/product/lpwa-bc660k-gl-nb2]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
11
12
13 = 2. Attach Network =
14
15
16 To attache NB-IoT sensors to NB-IoT Network, You need to:
17
18 1. Get a NB-IoT SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
19 1. Insert the SIM card to Sensor
20 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (% class="mark" %)(补充 APN 指令(%%))
21
22 [[image:image-20230808205045-1.png||height="293" width="438"]]
23
24 After doing above, the NB-IoT Sensors should be able to attach to NB-IoT network .
25
26 The -NB and -NS models support (% style="color:blue" %)**LTE Cat NB2**(%%), with below frequency band: multiple frequency bands of (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85**(%%) . Make sure you use a the NB-IoT SIM card.
27
28 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:878px" %)
29 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**APN**|(% style="background-color:#4f81bd; color:white; width:474px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Comments**
30 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:474px" %)(((
31 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
32
33 Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Finland, Germany, Great Britain, Greece, Hungary, Ireland, Italy, Latvia, Malta, Netherlands, Norway, Puerto Rico, Russia, Slovak , Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, US Virgin Islands
34 )))|(% style="width:135px" %)
35 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:474px" %)China Mainland, HongKong|(% style="width:135px" %)
36 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:474px" %)China Mainland|(% style="width:135px" %)
37
38
39 = 3. Configure to connect to different servers =
40
41 == 3.1 General UDP Connection ==
42
43
44 The NB-IoT Sensor can send packet to server use UDP protocol.
45
46
47 === 3.1.1 Simulate UDP Connection by PC tool ===
48
49
50 We can use PC tool to simulate UDP connection to make sure server works ok.
51
52 [[image:image-20230802112413-1.png]]
53
54
55 === 3.1.2 Configure NB-IoT Sensor ===
56
57 ==== 3.1.2.1 AT Commands ====
58
59
60 (% style="color:blue" %)**AT Commands:**
61
62 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/  Set to use UDP protocol to uplink ,Payload Type select Hex payload
63
64 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/  Set UDP server address and port
65
66 * (% style="color:#037691" %)**AT+CFM=1**    (%%) ~/~/  If the server does not respond, this command is unnecessary
67
68 [[image:image-20230802112413-2.png]]
69
70
71 ==== 3.1.2.2 Uplink Example ====
72
73
74 [[image:image-20230802112413-3.png]]
75
76
77 == 3.2 General MQTT Connection ==
78
79
80 The NB-IoT Sensor can send packet to server use MQTT protocol.
81
82 Below are the commands.
83
84 (% style="color:blue" %)**AT Commands:**
85
86 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/  Set to use MQTT protocol to uplink, Payload Type select Hex payload.
87
88 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/  Set MQTT server address and port
89
90 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/  Set up the CLIENT of MQTT
91
92 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/  Set the username of MQTT
93
94 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/  Set the password of MQTT
95
96 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/  Set the sending topic of MQTT
97
98 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/  Set the subscription topic of MQTT
99
100 [[image:image-20230802112413-4.png]]
101
102 [[image:image-20230802112413-5.png]]
103
104 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink  period to a suitable interval.**
105
106
107 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
108
109 === 3.3.1 Get MQTT Credentials ===
110
111
112 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
113
114 [[image:image-20230802112413-6.png]]
115
116 [[image:image-20230802112413-7.png]]
117
118
119 === 3.3.2 Simulate with MQTT.fx ===
120
121 ==== 3.3.2.1 Establish MQTT Connection ====
122
123
124 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
125
126 [[image:image-20230802112413-8.png]]
127
128 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
129
130 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
131
132 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
133
134 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
135
136 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
137
138
139 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
140
141
142 [[image:image-20230802112413-9.png]]
143
144 [[image:image-20230802112413-10.png]]
145
146
147 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
148
149 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
150
151 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
152
153 Where 63 and 67 are the value to be published to field1 & field2.
154
155
156 (% style="color:blue" %)**Result: **
157
158 [[image:image-20230802112413-11.png]]
159
160
161 === 3.3.3 Configure NB-IoT Sensor for connection ===
162
163 ==== 3.3.3.1 AT Commands: ====
164
165
166 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
167
168 * (% style="color:blue" %)**AT+PRO=3,1** (%%) **~/~/ Set to use ThingSpeak Server and Related Payload**
169
170 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
171
172 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
173
174 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
175
176 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
177
178 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
179
180
181 ==== 3.3.3.2 Uplink Examples ====
182
183
184 For S31-NB
185
186 For SE01-NB
187
188 For DDS20-NB
189
190 For DDS45-NB
191
192 For DDS75-NB
193
194 For NMDS120-NB
195
196 For SPH01-NB
197
198 For NLM01-NB
199
200 For NMDS200-NB
201
202 For CPN01-NB
203
204 For DS03A-NB
205
206 For SN50V3-NB
207
208
209 ==== 3.3.3.3 Map fields to sensor value ====
210
211
212 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
213
214
215 [[image:image-20230802112413-12.png]]
216
217 [[image:image-20230802112413-13.png]]
218
219
220 Below is the NB-IoT Product Table show the mapping.
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
223 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
224 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
225 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
226 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
227 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
228 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
229 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
230 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
231 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
232 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
233 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
234 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
235 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
236 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
237 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
238 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
239 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
240 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
241
242
243 == 3.4 Datacake ==
244
245 === 3.4.1 Create device ===
246
247
248 [[image:image-20230808162301-1.png]]
249
250
251 [[image:image-20230808162342-2.png]]
252
253
254 [[image:image-20230808162421-3.png]]
255
256
257 The device ID needs to be filled in with IMEI, and a prefix of** 'f' **needs to be added.
258
259 [[image:image-20230808163612-7.png]]
260
261 [[image:image-20230808163035-5.png]]
262
263 [[image:image-20230808163049-6.png]]
264
265
266 === 3.4.2 Scan QR code to obtain data ===
267
268
269 Users can use their phones or computers to scan QR codes to obtain device data information.
270
271 [[image:image-20230808170051-8.png]]
272
273 [[image:image-20230808170548-9.png]]
274
275
276 === 3.4.2 AT command for connecting to DataCake ===
277
278
279 (% style="color:blue" %)**AT+PRO=2,0**
280
281 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
282
283
284 == 3.5 Node-Red (via MQTT) ==
285
286 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
287
288
289 Take S31-NB UDP protocol as an example.
290
291 Dragino provides input flow examples for the sensors.
292
293 User can download the required JSON file through Dragino Node-RED input flow template.
294
295 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
296
297 We can directly import the template.
298
299 The templates for S31-NB and NB95S31B are the same.
300
301
302 [[image:image-20230809173127-4.png]]
303
304 Please select the NB95S31B template.
305
306 [[image:image-20230809173310-5.png]]
307
308 [[image:image-20230809173438-6.png]]
309
310 [[image:image-20230809173800-7.png]]
311
312 Successfully imported template.
313
314 [[image:image-20230809173835-8.png]]
315
316
317 Users can set UDP port.
318
319 [[image:image-20230809174053-9.png]]
320
321 === 3.5.2 Simulate Connection ===
322
323 We have completed the configuration of UDP. We can try sending packets to node red.
324
325
326
327 === 3.5.3 Configure NB-IoT Sensors ===
328
329
330 * (% style="color:blue" %)**AT+PRO=2,0(hex format) or 2,1(json format)**(%%)    **~/~/  Set to UDP Server and  Payload**
331
332 * **AT+SERVADDR=xx.xx.xx.xx,port  ** **~/~/  Set Server IP and  port**
333
334
335 == 3.6 ThingsBoard.Cloud (via MQTT) ==
336
337 === 3.6.1 Configure ThingsBoard ===
338
339 ==== 3.6.1.1 Create Device ====
340
341
342 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
343
344 [[image:image-20230802112413-32.png]]
345
346
347 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
348
349
350 (% style="color:blue" %)**Uplink Converter**
351
352 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
353
354 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
355
356 [[image:image-20230802112413-33.png||height="732" width="1302"]]
357
358
359 (% style="color:blue" %)**Downlink Converter**
360
361 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
362
363 [[image:image-20230802112413-34.png||height="734" width="1305"]]
364
365 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
366
367
368 ==== 3.6.1.3 MQTT Integration Setup ====
369
370
371 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
372
373 [[image:image-20230802112413-35.png||height="738" width="1312"]]
374
375
376 * The next steps is to add the recently created uplink and downlink converters;
377
378 [[image:image-20230802112413-36.png||height="736" width="1308"]]
379
380 [[image:image-20230802112413-37.png||height="735" width="1307"]]
381
382
383 (% style="color:blue" %)**Add a topic filter:**
384
385 tb/mqtt-integration-tutorial/sensors~/~/temperature ~-~-> Temperature  **固定的? 对的。**
386
387 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
388
389 [[image:image-20230802112413-38.png||height="731" width="1300"]]
390
391
392 === 3.6.2 Simulate with MQTT.fx ===
393
394
395 [[image:image-20230802112413-39.png]]
396
397 [[image:image-20230802112413-40.png]]
398
399
400 === 3.6.3 Configure NB-IoT Sensor ===
401
402
403 (% style="color:blue" %)**AT Commands**
404
405 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
406
407 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
408
409 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
410
411 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
412
413 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
414
415 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
416
417
418 Test Uplink by click the button for 1 second
419
420 [[image:image-20230802112413-41.png]]
421
422 [[image:image-20230802112413-42.png]]
423
424 [[image:image-20230802112413-43.png]]
425
426
427 == 3.7 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
428
429 === 3.7.1 Create device & Get Credentials ===
430
431
432 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
433
434 [[image:image-20230802112413-44.png]]
435
436 [[image:image-20230802112413-45.png]]
437
438
439 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
440
441 [[image:image-20230802112413-46.png]]
442
443
444 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
445
446 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
447
448 * (% style="color:#037691" %)**Profile Name: “Any name”**
449
450 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
451
452 * (% style="color:#037691" %)**Broker Port: 8883**
453
454 * (% style="color:#037691" %)**Client ID: “Any value”**
455
456
457 (% style="color:blue" %)**On the section User credentials, set the following information:**
458
459 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
460
461 * (% style="color:#037691" %)**Password: “Your device token”**
462
463 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
464
465 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
466
467
468 (% style="color:blue" %)**AT command:**
469
470 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
471
472 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
473
474 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
475
476 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
477
478 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
479
480 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
481
482
483 === 3.7.2 Simulate with MQTT.fx ===
484
485 [[image:image-20230802112413-52.png]]
486
487
488 [[image:image-20230808105300-2.png]]
489
490 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
491
492 [[image:image-20230808105217-1.png]]
493
494 [[image:image-20230808105329-3.png]]
495
496
497 === 3.7.3 tago data ===
498
499
500 [[image:image-20230802112413-50.png]]
501
502 [[image:image-20230802112413-51.png||height="184" width="696"]]
503
504
505
506 == 3.8 TCP Connection ==
507
508
509 (% style="color:blue" %)**AT command:**
510
511 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
512
513 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
514
515 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
516
517
518 (% style="color:blue" %)**Sensor Console Output when Uplink:**
519
520 [[image:image-20230807233631-1.png]]
521
522
523 (% style="color:blue" %)**See result in TCP Server:**
524
525 [[image:image-20230807233631-2.png]]
526
527
528
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0