Show last authors
1 (% class="wikigeneratedid" id="HTableofContents:" %)
2 **Table of Contents:**
3
4 {{toc/}}
5
6
7
8
9
10
11 = 1. The use of this guideline =
12
13
14 This configure instruction is for Dragino NB-IoT models with -NB or -NS suffix, for example DDS75-NB. These models use the same NB-IoT Module **[[BC660K-GL>>https://www.quectel.com/product/lpwa-bc660k-gl-nb2]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
15
16
17 = 2. Attach Network =
18
19 == 2.1 General Configure to attach network ==
20
21
22 To attache NB-IoT sensors to NB-IoT Network, You need to:
23
24 1. Get a NB-IoT SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
25 1. Power Off End Node ( See below for the power off/on position)
26 1. Insert the SIM card to Sensor. ( See below for direction)
27 1. Power On End Node
28 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
29
30 [[image:image-20240208102804-1.png||height="286" width="696"]]
31
32 [[image:image-20230808205045-1.png||height="293" width="438"]]
33
34 After doing above, the NB-IoT Sensors should be able to attach to NB-IoT network .
35
36 The -NB and -NS models support (% style="color:blue" %)**LTE Cat NB2**(%%), with below frequency band: multiple frequency bands of (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85**(%%) . Make sure you use a the NB-IoT SIM card.
37
38 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:878px" %)
39 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:474px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Comments**
40 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:474px" %)(((
41 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
42
43 Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Finland, Germany, Great Britain, Greece, Hungary, Ireland, Italy, Latvia, Malta, Netherlands, Norway, Puerto Rico, Russia, Slovak , Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, UK, US Virgin Islands
44 )))|(% style="width:135px" %)UK: Band20
45 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:474px" %)China Mainland, HongKong|(% style="width:135px" %)
46 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:474px" %)China Mainland|(% style="width:135px" %)
47
48 == 2.2 Speed Up Network Attach time ==
49
50
51 BC660K-GL supports multi bands (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**. User can lock the band to specify band for its operator to make this faster.
52
53 (% style="color:#037691" %)**AT+QBAND?       **(%%) ~/~/ Check what is the current used frequency band
54 (% style="color:#037691" %)**AT+QBAND=1,4    **(%%) ~/~/ Set to use 1 frequency band. Band4
55 (% style="color:#037691" %)**Europe General**(%%) **AT+QBAND=2,8,20 ** ~/~/ Set to use 2 frequency bands. Band 8 and Band 20
56 (% style="color:#037691" %)**Global General**(%%) : **AT+QBAND=10,8,20,28,2,4,12,13,66,85,5**
57
58 (% style="color:#037691" %)**Verizon**(%%)** ** AT+QBAND=1,13
59 (% style="color:#037691" %)**AT&T**(%%)           AT+QBAND=3,12,4,2
60 (% style="color:#037691" %)**Telstra**(%%)        AT+QBAND=1,28
61 (% style="color:#037691" %)**Softband**(%%)     AT+QBAND=2,3,8
62
63 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG=0 **(%%) to check which band is actually in used.
64
65 By default, device will search network for 5 minutes. User can set the time to 10 minutes by (% style="color:#037691" %)**AT+CSQTIME=10 **(%%)so it can search longer.
66
67 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
68
69
70 = 3. Configure to connect to different servers =
71
72 == 3.1 General UDP Connection ==
73
74
75 The NB-IoT Sensor can send packet to server use UDP protocol.
76
77
78 === 3.1.1 Simulate UDP Connection by PC tool ===
79
80
81 We can use PC tool to simulate UDP connection to make sure server works ok.
82
83 [[image:image-20230802112413-1.png||height="468" width="1024"]]
84
85
86 === 3.1.2 Configure NB-IoT Sensor ===
87
88 ==== 3.1.2.1 AT Commands ====
89
90
91 (% style="color:blue" %)**AT Commands:**
92
93 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/  Set to use UDP protocol to uplink ,Payload Type select Hex payload
94
95 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/  Set UDP server address and port
96
97 [[image:image-20230802112413-2.png]]
98
99
100 ==== 3.1.2.2 Uplink Example ====
101
102
103 [[image:image-20230802112413-3.png]]
104
105
106 == 3.2 General MQTT Connection ==
107
108
109 The NB-IoT Sensor can send packet to server use MQTT protocol.
110
111 Below are the commands.
112
113 (% style="color:blue" %)**AT Commands:**
114
115 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/  Set to use MQTT protocol to uplink, Payload Type select Hex payload.
116
117 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/  Set MQTT server address and port
118
119 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/  Set up the CLIENT of MQTT
120
121 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/  Set the username of MQTT
122
123 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/  Set the password of MQTT
124
125 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/  Set the sending topic of MQTT
126
127 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/  Set the subscription topic of MQTT
128
129 [[image:image-20230802112413-4.png]]
130
131 [[image:image-20230802112413-5.png||height="530" width="987"]]
132
133 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink  period to a suitable interval.**
134
135
136 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
137
138 === 3.3.1 Get MQTT Credentials ===
139
140
141 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
142
143 [[image:image-20230802112413-6.png||height="336" width="925"]]
144
145 [[image:image-20230802112413-7.png]]
146
147
148 === 3.3.2 Simulate with MQTT.fx ===
149
150 ==== 3.3.2.1 Establish MQTT Connection ====
151
152
153 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
154
155 [[image:image-20230802112413-8.png]]
156
157 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
158
159 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
160
161 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
162
163 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
164
165 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
166
167 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
168
169
170 [[image:image-20230802112413-9.png]]
171
172 [[image:image-20230802112413-10.png]]
173
174
175 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
176
177 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
178
179 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
180
181 Where 63 and 67 are the value to be published to field1 & field2.
182
183
184 (% style="color:blue" %)**Result: **
185
186 [[image:image-20230802112413-11.png||height="539" width="901"]]
187
188
189 === 3.3.3 Configure NB-IoT Sensor for connection ===
190
191 ==== 3.3.3.1 AT Commands: ====
192
193
194 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
195
196 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
197
198 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
199
200 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
201
202 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
203
204 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
205
206 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
207
208 ==== 3.3.3.2 Uplink Examples ====
209
210
211 [[image:image-20230816201942-1.png]]
212
213 For SE01-NB
214
215 For DDS20-NB
216
217 For DDS45-NB
218
219 For DDS75-NB
220
221 For NMDS120-NB
222
223 For SPH01-NB
224
225 For NLM01-NB
226
227 For NMDS200-NB
228
229 For CPN01-NB
230
231 For DS03A-NB
232
233 For SN50V3-NB
234
235
236 ==== 3.3.3.3 Map fields to sensor value ====
237
238
239 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
240
241
242 [[image:image-20230802112413-12.png||height="504" width="1011"]]
243
244 [[image:image-20230802112413-13.png||height="331" width="978"]]
245
246
247 Below is the NB-IoT Product Table show the mapping.
248
249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
250 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
251 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
252 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
253 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
254 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
255 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
256 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
257 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
258 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
259 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
260 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
261 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
262 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
263 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
264 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
265 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
266 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
267 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
268
269 == 3.4 [[Datacake>>https://datacake.co/]] ==
270
271
272 (% class="wikigeneratedid" %)
273 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
274
275
276 (% class="wikigeneratedid" %)
277 As example for S31B-NB. there are two versions: **S31B-NB-1D and S31B-NB-GE.**
278
279 * (% style="color:blue" %)**S31B-NB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
280
281 * (% style="color:blue" %)**S31B-NB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
282
283 === 3.4.1 For device Already has template ===
284
285 ==== 3.4.1.1 Create Device ====
286
287
288 (% style="color:blue" %)**Add Device**(%%) in DataCake.
289
290 [[image:image-20230808162301-1.png||height="453" width="952"]]
291
292
293 [[image:image-20230808162342-2.png||height="541" width="952"]]
294
295
296 (% style="color:blue" %)**Choose the correct model**(%%) from template.
297
298 [[image:image-20230808162421-3.png]]
299
300
301 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
302
303 [[image:image-20230808163612-7.png||height="549" width="952"]]
304
305 [[image:image-20230808163035-5.png]]
306
307 [[image:image-20230808163049-6.png||height="544" width="926"]]
308
309
310 === 3.4.2 For Device already registered in DataCake before shipped ===
311
312 ==== 3.4.2.1 Scan QR Code to get the device info ====
313
314
315 Users can use their phones or computers to scan QR codes to obtain device data information.
316
317 [[image:image-20230808170051-8.png||height="255" width="259"]]
318
319 [[image:image-20230808170548-9.png]]
320
321
322 ==== 3.4.2.2 Claim Device to User Account ====
323
324
325 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
326
327
328 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
329
330
331 **Step1: Add a device**
332
333 [[image:image-20240129170024-1.png||height="330" width="900"]]
334
335
336 **Step2: Choose your device type,please select dragino NB-IOT device**
337
338 [[image:image-20240129170216-2.png||height="534" width="643"]]
339
340
341 **Step3: Choose to create a new device**
342
343 [[image:image-20240129170539-3.png||height="459" width="646"]]
344
345
346 **Step4: Fill in the device ID of your NB device**
347
348 [[image:image-20240202111546-1.png||height="378" width="651"]]
349
350
351 **Step5: Please select your device plan according to your needs and complete the creation of the device**
352
353 [[image:image-20240129171236-6.png||height="450" width="648"]]
354
355
356 **Step6: Please add the decoder at the payload decoder of the device configuration.**
357
358 **Decoder location: **[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
359
360 **Due to version update, please use the following decoder for the new version firmware:**
361 [[dragino-end-node-decoder/Datacake-Dragino_NB_New_Version at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB_New_Version]]
362
363 [[image:image-20240129172056-7.png||height="457" width="816"]]
364
365 [[image:image-20240129173116-9.png||height="499" width="814"]]
366
367
368 **Step7: Add the output of the decoder as a field**
369
370 [[image:image-20240129173541-10.png||height="592" width="968"]]
371
372
373 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
374
375 [[image:image-20240129174518-11.png||height="147" width="1042"]]
376
377 [[image:image-20240129174657-12.png||height="538" width="916"]]
378
379 [[image:image-20240129174840-13.png||height="536" width="750"]]
380
381
382 === 3.4.4 For device have not configured to connect to DataCake ===
383
384
385 (% class="lead" %)
386 Use AT command for connecting to DataCake
387
388 (% style="color:blue" %)**AT+PRO=2,0**
389
390 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
391
392
393 == 3.5 Node-Red (via MQTT) ==
394
395 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
396
397
398 Take S31-NB UDP protocol as an example.
399
400 Dragino provides input flow examples for the sensors.
401
402 User can download the required JSON file through Dragino Node-RED input flow template.
403
404 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
405
406 We can directly import the template.
407
408 The templates for S31-NB and NB95S31B are the same.
409
410
411 [[image:image-20230809173127-4.png]]
412
413
414 Please select the NB95S31B template.
415
416 [[image:image-20230809173310-5.png||height="558" width="926"]]
417
418 [[image:image-20230809173438-6.png]]
419
420 [[image:image-20230809173800-7.png]]
421
422
423 Successfully imported template.
424
425 [[image:image-20230809173835-8.png||height="515" width="860"]]
426
427
428 Users can set UDP port.
429
430 [[image:image-20230809174053-9.png]]
431
432
433 === 3.5.2 Simulate Connection ===
434
435
436 We have completed the configuration of UDP. We can try sending packets to node red.
437
438 [[image:image-20230810083934-1.png]]
439
440 [[image:image-20230810084048-2.png||height="535" width="1052"]]
441
442
443 === 3.5.3 Configure NB-IoT Sensors ===
444
445
446 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
447 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
448 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
449 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
450 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
451 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
452
453 == 3.6 ThingsBoard.Cloud (via MQTT) ==
454
455 === 3.6.1 Configure ThingsBoard ===
456
457 ==== 3.6.1.1 Create Device ====
458
459
460 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
461
462 [[image:image-20230802112413-32.png||height="583" width="1066"]]
463
464
465 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
466
467
468 (% style="color:blue" %)**Uplink Converter**
469
470 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
471
472 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
473
474 [[image:image-20230802112413-33.png||height="597" width="1061"]]
475
476
477 (% style="color:blue" %)**Downlink Converter**
478
479 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
480
481 [[image:image-20230802112413-34.png||height="598" width="1063"]]
482
483 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
484
485
486 ==== 3.6.1.3 MQTT Integration Setup ====
487
488
489 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
490
491 [[image:image-20230802112413-35.png||height="597" width="1062"]]
492
493
494 * The next steps is to add the recently created uplink and downlink converters;
495
496 [[image:image-20230802112413-36.png||height="598" width="1062"]]
497
498 [[image:image-20230802112413-37.png||height="598" width="1064"]]
499
500
501 (% style="color:blue" %)**Add a topic filter:**
502
503 Consistent with the theme of the node setting.
504
505 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
506
507 [[image:image-20230802112413-38.png||height="598" width="1064"]]
508
509
510 === 3.6.2 Simulate with MQTT.fx ===
511
512
513 [[image:image-20230802112413-39.png]]
514
515 [[image:image-20230802112413-40.png||height="525" width="980"]]
516
517
518 === 3.6.3 Configure NB-IoT Sensor ===
519
520
521 (% style="color:blue" %)**AT Commands**
522
523 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
524
525 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
526
527 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
528
529 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
530
531 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
532
533 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
534
535 Test Uplink by click the button for 1 second
536
537 [[image:image-20230802112413-41.png||height="496" width="828"]]
538
539 [[image:image-20230802112413-42.png]]
540
541 [[image:image-20230802112413-43.png||height="407" width="825"]]
542
543
544 == 3.7 ThingsBoard.Cloud (via COAP) ==
545
546 === 3.7.1 Configure ThingsBoard ===
547
548 ==== 3.7.1.1 Create Uplink & Downlink Converter ====
549
550
551 (% style="color:blue" %)**Uplink Converter**
552
553 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
554
555 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“COAP Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
556
557 [[image:image-20240729141300-1.png||height="552" width="1115"]]
558
559
560 (% style="color:blue" %)**Downlink Converter**
561
562 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external COAP broker.
563
564 [[image:image-20240729142505-3.png||height="507" width="1023"]]
565
566
567 ==== 3.7.1.2 COAP Integration Setup ====
568
569
570 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“CoAP Integration”**(%%), select type **COAP    **(% style="color:blue" %);
571
572 [[image:image-20240729144058-4.png||height="506" width="1021"]]
573
574
575 The next steps is to add the recently created uplink converters;
576
577 [[image:image-20240729150142-5.png||height="507" width="1023"]]
578
579
580 ==== 3.7.1.3 Add COAP Integration ====
581
582
583 ==== [[image:image-20240729161543-9.png||height="500" width="1009"]] ====
584
585
586 === 3.7.2 Node Configuration(Example: Connecting to the Thingsboard platform) ===
587
588 ==== 3.7.2.1 Instruction Description ====
589
590
591 * AT+PRO=1,0(HEX format uplink)  &AT+PRO=1,5(JSON format uplink)
592 * AT+SERVADDR=COAP Server Address,5683
593
594 Example: AT+SERVADDR=int.thingsboard.cloud,5683(The address is automatically generated when the COAP integration is created)
595
596 [[image:image-20240729172305-12.png||height="361" width="624"]]
597
598 Note:The port for the COAP protocol has been fixed to 5683
599
600
601 * AT+URL1=11,(% style="color:red" %)**character length**(%%),"Needs to be consistent with the CoAP endpoint URL in the platform"
602
603 If the module used is (% style="color:red" %)**BC660K, only one **(%%)URL directive needs to be configured,
604
605 e.g.
606
607 * AT+URL1=11,38, "i/faaaa241f-af4a-b780-4468-c671bb574858"
608
609 [[image:image-20240729172415-13.png||height="401" width="694"]]
610
611 If you are using a (% style="color:red" %)**BG95-M2**(%%) module, you need to configure (% style="color:red" %)**TWO**(%%) URL commands,
612
613 e.g.
614
615 * AT+URL1=11, "i";  
616 * AT+URL2=11,"/faaaa241f-af4a-b780-4468-c671bb574858"
617
618 [[image:image-20240729172500-14.png||height="403" width="700"]]
619
620
621 == 3.8 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
622
623 === 3.8.1 Create device & Get Credentials ===
624
625
626 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
627
628 [[image:image-20230802112413-44.png]]
629
630 [[image:image-20230802112413-45.png]]
631
632
633 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
634
635 [[image:image-20230802112413-46.png]]
636
637
638 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
639
640 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
641
642 * (% style="color:#037691" %)**Profile Name: “Any name”**
643
644 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
645
646 * (% style="color:#037691" %)**Broker Port: 8883**
647
648 * (% style="color:#037691" %)**Client ID: “Any value”**
649
650 (% style="color:blue" %)**On the section User credentials, set the following information:**
651
652 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
653
654 * (% style="color:#037691" %)**Password: “Your device token”**
655
656 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
657
658 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
659
660 (% style="color:blue" %)**AT command:**
661
662 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
663
664 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
665
666 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
667
668 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
669
670 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
671
672 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
673
674 === 3.8.2 Simulate with MQTT.fx ===
675
676
677 [[image:image-20230802112413-52.png]]
678
679
680 [[image:image-20230808105300-2.png||height="553" width="1026"]]
681
682
683 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
684
685 [[image:image-20230808105217-1.png||height="556" width="1031"]]
686
687 [[image:image-20230808105329-3.png]]
688
689
690 === 3.8.3 tago data ===
691
692
693 [[image:image-20230802112413-50.png||height="242" width="1037"]]
694
695 [[image:image-20230802112413-51.png||height="184" width="696"]]
696
697
698 == 3.9 TCP Connection ==
699
700
701 (% style="color:blue" %)**AT command:**
702
703 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
704
705 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
706
707 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
708
709 (% style="color:blue" %)**Sensor Console Output when Uplink:**
710
711 [[image:image-20230807233631-1.png]]
712
713
714 (% style="color:blue" %)**See result in TCP Server:**
715
716 [[image:image-20230807233631-2.png]]
717
718
719 == 3.10 AWS Connection ==
720
721
722 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
723
724
725 = 4. MQTT/UDP/TCP downlink =
726
727 == 4.1 MQTT (via MQTT.fx) ==
728
729
730 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
731
732 **1.** Configure node MQTT connection (via MQTT.fx):
733
734 (% style="color:blue" %)**AT command:**
735
736 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
737
738 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
739
740 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
741
742 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
743
744 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
745
746 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
747
748 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
749
750 [[image:image-20240417180145-2.png||height="434" width="587"]][[image:image-20240417180737-3.png||height="431" width="584"]]
751
752
753 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
754
755 [[image:image-20240418144337-1.png||height="709" width="802"]]
756
757 **3. **The downlink command can be successfully sent only when the downlink port is open.
758
759 The downlink port is opened for about 3 seconds after uplink packets are sent.
760
761 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
762
763 [[image:image-20240418150435-3.png||height="582" width="659"]]
764
765 [[image:image-20240418150932-4.png||height="492" width="1061"]]
766
767 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
768
769
770 = 5. FAQ =
771
772 == 5.1 What is the usage of Multi Sampling and One Uplink? ==
773
774
775 The NB series has the feature for Multi Sampling and one uplink. See one of them
776
777 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
778
779 User can use this feature for below purpose:
780
781 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
782 1. Give more sampling data points.
783 1. Increase reliable in transmission. For example. If user set
784 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
785 1*. **AT+NOUD=24** ~/~/  The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
786 1*. **AT+TDC=7200**  ~/~/ Uplink every 2 hours.
787 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
788
789 == 5.2 Why the uplink JSON format is not standard? ==
790
791
792 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
793
794 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
795
796 [[image:image-20240229233154-1.png]]
797
798
799 = 6. Trouble Shooting: =
800
801 == 6.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
802
803
804 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
805
806 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
807
808 [[image:image-20240207002003-1.png]]
809
810
811 If fail to attach network, it will shows signal 99. as below:
812
813 [[image:image-20240207002129-2.png]]
814
815
816 (% class="lead" %)
817 When see this issue, below are the checklist:
818
819 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
820 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
821 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
822 * Check if the device is attached to Carrier network but reject. (need to check with operator).
823 * Check if the antenna is connected firmly.
824
825 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
826
827
828 == 6.2 Issue: "NBIOT did not respond" ==
829
830
831 (% class="box errormessage" %)
832 (((
833 11:24:22.397 [44596]NBIOT did not respond.
834 11:24:24.315 [46530]NBIOT did not respond.
835 11:24:26.256 [48464]NBIOT did not respond.
836 11:24:28.196 [50398]NBIOT did not respond.
837 11:24:30.115 [52332]NBIOT did not respond.
838 11:24:32.127 [54266]NBIOT did not respond.
839 11:24:32.127 [54299]Restart the module...
840 11:24:39.181 [61332]No response when shutting down
841 )))
842
843 This issue might due to initiate issue for NB-IoT module. In this case, please try:
844
845 1) Open Enclosure
846
847 2) Power off device by pull out the power on Jumper
848
849 3) Power on device by connect back the power jumper.
850
851 4) push reset button.
852
853 [[image:image-20240208001740-1.png]]
854
855
856 == 6.3 Issue: "Failed to readI MSI number" ==
857
858
859 (% class="box errormessage" %)
860 (((
861 [18170]Failed to read IMSI:1umber.
862 [20109]Failed to read IMSI numoer.
863 [22048]Failed to read IMSI number.
864 [29842lRestart the module...
865 )))
866
867 Make sure that the SIM card is insert in correct direction and device is power off/on during insert. Here is reference link: [[Insert SIM Card>>||anchor="H2.1GeneralConfiguretoattachnetwork"]].
868
869
870 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.4 Why sometime the AT Command is slow in reponse?(%%) ==
871
872
873 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
874
875 [[image:image-20240226111928-1.png]]
876
877
878 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.5 What is the Downlink Command by the NB device?(%%) ==
879
880 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
881 === UDP: ===
882
883 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
884 Its downlink command is the same as the AT command, but brackets are required.
885 Example:
886
887 {AT+TDC=300}
888
889
890 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
891 === MQTT: ===
892
893 Json:
894
895 The Json format in MQTT mode needs to be configured with all commands.
896 If you have configurations that need to be changed, please change them in the template below.
897 Template:
898
899 {
900 "AT+SERVADDR":"119.91.62.30,1882",
901 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
902 "AT+UNAME":"usenamedragino",
903 "AT+PWD":"passworddragino",
904 "AT+PUBTOPIC":"123",
905 "AT+SUBTOPIC":"321",
906 "AT+TDC":"7200",
907 "AT+INTMOD":"0",
908 "AT+APN":"NULL",
909 "AT+5VT":"0",
910 "AT+PRO":"3,5",
911 "AT+TR":"900",
912 "AT+NOUD":"0",
913 "AT+CSQTIME":"5",
914 "AT+DNSTIMER":"0",
915 "AT+TLSMOD":"0,0",
916 "AT+MQOS":"0",
917 "AT+TEMPALARM1":"0",
918 "AT+TEMPALARM2":"10",
919 "AT+TEMPALARM3":"0"
920 }
921
922 Hex:
923
924 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
925
926 The supported commands are consistent with LoRaWAN's hex commands.
927 Please refer to the following link to obtain the hex format:
928
929 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
930
931
932 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.6 How to obtain device logs?(%%) ==
933
934
935 * **AT Command: AT** **+GETLOG**
936
937 This command can be used to query upstream logs of data packets.
938
939 [[image:image-20240701114700-1.png]]
940
941
942 == 6.7 How to find the AT Command Password if lost? ==
943
944
945 == 6.7.1. Why can't the password access AT command after upgrade(-NB)? ==
946
947
948 Because the new version of -NB firmware has updated the factory reset function, users can choose to restore all parameters to factory Settings, or keep the password to restore the rest of the parameters to factory Settings.
949
950 This update changes the password address of the firmware, so the password will be invalid after the customer upgrades from the old version of firmware (without FDR1 function) to the new version of firmware (with FDR1 function).
951
952 Two different restore factory Settings configurations.
953
954 (% style="color:blue" %)**AT command:**
955
956 * (% style="color:#037691; font-weight:bold" %)**AT+FDR**(%%)**       **~/~/ Reset Parameters to Factory Default.
957 * (% style="color:#037691; font-weight:bold" %)**AT+FDR1**(%%)**     **~/~/ Reset parameters to factory default values except for passwords.(new)
958
959 == 6.7.2 Version Confirmation ==
960
961
962 We are now dividing the **old firmware**(without FDR1 function) with the **new firmware**(with FDR1 function) by whether it contains FDR1 functionality. Please refer to the table:
963
964 (% border="1" style="background-color:#f2f2f2; width:510px" %)
965 |(% style="background-color:#4f81bd; color:white; width:210px" %)**General Model**|(% style="background-color:#4f81bd; color:white; width:150px" %)(((
966 **Firmware version**
967
968 **(without FDR1 function)**
969 )))|(% style="background-color:#4f81bd; color:white; width:150px" %)(((
970 **Firmware version**
971
972 **(with FDR1 function)**
973 )))
974 |(% style="width:210px" %)(((
975 CPL03-NB, S31-NB, SN50V3-NB, TS01-NB, D20-NB, DS03A-NB, DDS04-NB, DDS45-NB, DDS20-NB, DDS75-NB, LDS12-NB, LDS40-NB, LMS01-NB, MDS120-NB,  MDS200-NB, SE01-NB, SPH01-NB;
976 )))|(% style="width:150px" %)Before V1.2.1|(% style="width:150px" %)After V1.2.1 (including V1.2.1)
977 |(% style="width:210px" %)(((
978 WL03A-NB, SDI-12-NB;
979 )))|(% style="width:150px" %)Before V1.0.2|(% style="width:150px" %)(((
980 After V1.0.8 (including V1.0.2)
981 )))
982 |(% style="width:210px" %)(((
983 SW3L-NB, PS-NB;
984 )))|(% style="width:150px" %)Before V1.0.5|(% style="width:150px" %)(((
985 After V1.0.5 (including V1.0.5)
986 )))
987 |(% style="width:210px" %)RS485-NB|(% style="width:150px" %)Before V1.0.8|(% style="width:150px" %)After V1.0.8 (including V1.0.8)
988
989
990 == 6.7.3 UART connection and firmware update methods ==
991
992
993 Users can query passwords only using the UART interface via the STM32CubeProgrammer.
994
995 See **[[UART Connection>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]**.
996
997 update firmware through UART TTL interface :** [[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART_Access_for_NB_ST_BC660K-GL/#H4.2UpdateFirmware28Assumethedevicealreadyhaveabootloader29]]**.
998
999
1000 == 6.7.4 query the password via STM32CubeProgrammer ==
1001
1002
1003 Users can use the password address to query the password through STM32CubeProgrammer.
1004
1005 * The password address for old firmware(without FDR1 function) : **0x08019000**
1006 * The password address for new firmware(with FDR1 function) : **0x08025D00**
1007
1008 (% style="color:red" %)**Notice: The password can only be queried after the firmware is run once.**
1009
1010
1011 **Procedure for querying the password(old firmware):**
1012
1013 * After the firmware upgrade is complete, switch back to the **FLASH** and reset the node to **run the firmware once**.
1014 * Then place the switch at the **ISP** and connect to the STM32CubeProgrammer (same as when burning the firmware).
1015 * Click "Device memory", enter **0x08019000** in "Address", and click "Read"
1016 * Find the 0x08019000 address field and then read the current password as shown in the screenshot below.
1017
1018 [[image:http://wiki.dragino.com/xwiki/bin/download/Why%20can%27t%20the%20password%20access%20AT%20command%20after%20upgrade%28-NB%29%3F/WebHome/image-20240827171901-3.png?width=912&height=528&rev=1.1||alt="image-20240827171901-3.png"]]
1019
1020
1021 **Procedure for querying the password(new firmware):**
1022
1023 Refer to [[the old and new firmware division>>http://wiki.dragino.com/xwiki/bin/view/Why%20can%27t%20the%20password%20access%20AT%20command%20after%20upgrade%28-NB%29%3F/#H3.A0VersionConfirmation]] above, and run the firmware first after updating the firmware.
1024
1025 * After the firmware upgrade is complete, switch back to the **FLASH** and reset the node to **run the new firmware once**.
1026 * Then place the switch at the **ISP** and connect to the STM32CubeProgrammer (same as when burning the firmware).
1027 * Click "Device memory", enter **0x08025D00** in "Address", and click "Read"
1028 * Find the 0x08025D00 address field and then read the current password as shown in the screenshot below.
1029
1030 [[image:http://wiki.dragino.com/xwiki/bin/download/Why%20can%27t%20the%20password%20access%20AT%20command%20after%20upgrade%28-NB%29%3F/WebHome/image-20240827180414-1.png?width=910&height=527&rev=1.1||alt="image-20240827180414-1.png"]]
1031
1032
1033
1034 == 6.7.5. Special case ==
1035
1036
1037 If the user has never changed the password manually, the user cannot find the valid password through the above two password addresses. In this case, the valid password is still the original password on the node box label (**AT+PIN**).
1038
1039 Invalid query screenshot example:
1040
1041
1042 [[image:http://wiki.dragino.com/xwiki/bin/download/Why%20can%27t%20the%20password%20access%20AT%20command%20after%20upgrade%28-NB%29%3F/WebHome/image-20240827181447-4.png?width=889&height=519&rev=1.1||alt="image-20240827181447-4.png"]]
1043
1044 [[image:http://wiki.dragino.com/xwiki/bin/download/Why%20can%27t%20the%20password%20access%20AT%20command%20after%20upgrade%28-NB%29%3F/WebHome/image-20240827181431-3.png?width=892&height=515&rev=1.1||alt="image-20240827181431-3.png"]]
1045
1046
1047
1048
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0