Show last authors
1 (% class="wikigeneratedid" id="HTableofContents:" %)
2 **Table of Contents:**
3
4 {{toc/}}
5
6
7
8
9
10
11 = 1. The use of this guideline =
12
13
14 This configure instruction is for Dragino NB-IoT models with -NB or -NS suffix, for example DDS75-NB. These models use the same NB-IoT Module **[[BC660K-GL>>https://www.quectel.com/product/lpwa-bc660k-gl-nb2]]** and has the same software structure. The have the same configure instruction to different IoT servers. Use can follow the instruction here to see how to configure to connect to those servers.
15
16
17 = 2. Attach Network =
18
19 == 2.1 General Configure to attach network ==
20
21
22 To attache NB-IoT sensors to NB-IoT Network, You need to:
23
24 1. Get a NB-IoT SIM card from Service Provider. (Not the same as the SIM card we use in mobile phone)
25 1. Power Off End Node ( See below for the power off/on position)
26 1. Insert the SIM card to Sensor. ( See below for direction)
27 1. Power On End Node
28 1. [[Configure APN>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20configure%20APN%20in%20the%20node/]] in the sensor (AT+APN=<APN>), example AT+APN=iot.1nce.net
29
30 [[image:image-20240208102804-1.png||height="286" width="696"]]
31
32 [[image:image-20230808205045-1.png||height="293" width="438"]]
33
34 After doing above, the NB-IoT Sensors should be able to attach to NB-IoT network .
35
36 The -NB and -NS models support (% style="color:blue" %)**LTE Cat NB2**(%%), with below frequency band: multiple frequency bands of (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85**(%%) . Make sure you use a the NB-IoT SIM card.
37
38 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:878px" %)
39 |(% style="background-color:#4f81bd; color:white; width:117px" %)**SIM Provider**|(% style="background-color:#4f81bd; color:white; width:151px" %)**AT+APN=**|(% style="background-color:#4f81bd; color:white; width:474px" %)**NB-IoT Coverage**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Comments**
40 |(% style="width:117px" %)**[[1NCE>>https://1nce.com]]**|(% style="width:151px" %)iot.1nce.net|(% style="width:474px" %)(((
41 **[[Coverage Reference Link>>https://1nce.com/en-ap/1nce-connect]]**
42
43 Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Finland, Germany, Great Britain, Greece, Hungary, Ireland, Italy, Latvia, Malta, Netherlands, Norway, Puerto Rico, Russia, Slovak , Republic, Slovenia, Spain, Sweden, Switzerland, Taiwan, USA, UK, US Virgin Islands
44 )))|(% style="width:135px" %)UK: Band20
45 |(% style="width:117px" %)China Mobile|(% style="width:151px" %)No need configure|(% style="width:474px" %)China Mainland, HongKong|(% style="width:135px" %)
46 |(% style="width:117px" %)China Telecom|(% style="width:151px" %)ctnb|(% style="width:474px" %)China Mainland|(% style="width:135px" %)
47
48 == 2.2 Speed Up Network Attach time ==
49
50
51 BC660K-GL supports multi bands (% style="color:blue" %)**B1/B2/B3/B4/B5/B8/B12/B13/B14/B17/B18/B19/B20/B25/B28/B66/B70/B85. **(%%) It will search one by one and try to attach, this will take a lot of time and even cause attach fail and show **Signal Strenght:99**. User can lock the band to specify band for its operator to make this faster.
52
53 (% style="color:#037691" %)**AT+QBAND?       **(%%) ~/~/ Check what is the current used frequency band
54 (% style="color:#037691" %)**AT+QBAND=1,4    **(%%) ~/~/ Set to use 1 frequency band. Band4
55 (% style="color:#037691" %)**Europe General**(%%) **AT+QBAND=2,8,20 ** ~/~/ Set to use 2 frequency bands. Band 8 and Band 20
56 (% style="color:#037691" %)**Global General**(%%) : **AT+QBAND=10,8,20,28,2,4,12,13,66,85,5**
57
58 (% style="color:#037691" %)**Verizon**(%%)** ** AT+QBAND=1,13
59 (% style="color:#037691" %)**AT&T**(%%)           AT+QBAND=3,12,4,2
60 (% style="color:#037691" %)**Telstra**(%%)        AT+QBAND=1,28
61 (% style="color:#037691" %)**Softband**(%%)     AT+QBAND=2,3,8
62
63 After connection is successful, user can use (% style="color:#037691" %)**AT+QENG=0 **(%%) to check which band is actually in used.
64
65 By default, device will search network for 5 minutes. User can set the time to 10 minutes by (% style="color:#037691" %)**AT+CSQTIME=10 **(%%)so it can search longer.
66
67 See bands used for different provider:** [[NB-IoT Deployment , Bands, Operator list>>http://wiki.dragino.com/xwiki/bin/view/Main/NB-IoT%20Deployment%20%2C%20Bands%2C%20Operator%20list/]]**
68
69
70 = 3. Configure to connect to different servers =
71
72 == 3.1 General UDP Connection ==
73
74
75 The NB-IoT Sensor can send packet to server use UDP protocol.
76
77
78 === 3.1.1 Simulate UDP Connection by PC tool ===
79
80
81 We can use PC tool to simulate UDP connection to make sure server works ok.
82
83 [[image:image-20230802112413-1.png||height="468" width="1024"]]
84
85
86 === 3.1.2 Configure NB-IoT Sensor ===
87
88 ==== 3.1.2.1 AT Commands ====
89
90
91 (% style="color:blue" %)**AT Commands:**
92
93 * (% style="color:#037691" %)**AT+PRO=2,0**  (%%) ~/~/  Set to use UDP protocol to uplink ,Payload Type select Hex payload
94
95 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601**  (%%) ~/~/  Set UDP server address and port
96
97 [[image:image-20230802112413-2.png]]
98
99
100 ==== 3.1.2.2 Uplink Example ====
101
102
103 [[image:image-20230802112413-3.png]]
104
105
106 == 3.2 General MQTT Connection ==
107
108
109 The NB-IoT Sensor can send packet to server use MQTT protocol.
110
111 Below are the commands.
112
113 (% style="color:blue" %)**AT Commands:**
114
115 * (% style="color:#037691" %)**AT+PRO=3,0**   (%%) ~/~/  Set to use MQTT protocol to uplink, Payload Type select Hex payload.
116
117 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883**  (%%) ~/~/  Set MQTT server address and port
118
119 * (% style="color:#037691" %)**AT+CLIENT=CLIENT**     (%%) ~/~/  Set up the CLIENT of MQTT
120
121 * (% style="color:#037691" %)**AT+UNAME=UNAME**        (%%) ~/~/  Set the username of MQTT
122
123 * (% style="color:#037691" %)**AT+PWD=PWD**             (%%) ~/~/  Set the password of MQTT
124
125 * (% style="color:#037691" %)**AT+PUBTOPIC=NSE01_PUB**  (%%) ~/~/  Set the sending topic of MQTT
126
127 * (% style="color:#037691" %)**AT+SUBTOPIC=NSE01_SUB**  (%%) ~/~/  Set the subscription topic of MQTT
128
129 [[image:image-20230802112413-4.png]]
130
131 [[image:image-20230802112413-5.png||height="530" width="987"]]
132
133 (% style="color:red" %)**Notice: MQTT protocol has a much higher power consumption compare with UDP/CoAP protocol. Please check the power analyze document and adjust the uplink  period to a suitable interval.**
134
135
136 == 3.3 [[ThingSpeak>>url:https://thingspeak.com/]] (via MQTT) ==
137
138 === 3.3.1 Get MQTT Credentials ===
139
140
141 [[ThingSpeak>>url:https://thingspeak.com/]] connection uses MQTT Connection. So we need to get MQTT Credentials first. You need to point MQTT Devices to ThingSpeak Channel as well.
142
143 [[image:image-20230802112413-6.png||height="336" width="925"]]
144
145 [[image:image-20230802112413-7.png]]
146
147
148 === 3.3.2 Simulate with MQTT.fx ===
149
150 ==== 3.3.2.1 Establish MQTT Connection ====
151
152
153 After we got MQTT Credentials, we can first simulate with PC tool MQTT.fx tool to see if the Credentials and settings are fine.
154
155 [[image:image-20230802112413-8.png]]
156
157 * (% style="color:#037691" %)**Broker Address:**(%%) mqtt3.thingspeak.com
158
159 * (% style="color:#037691" %)**Broker Port:**(%%) 1883
160
161 * (% style="color:#037691" %)**Client ID:**(%%) <Your ThingSpeak MQTT ClientID>
162
163 * (% style="color:#037691" %)**User Name:**(%%) <Your ThingSpeak MQTT User Name>
164
165 * (% style="color:#037691" %)**Password:**(%%) <Your ThingSpeak MQTT Password>
166
167 ==== 3.3.2.2 Publish Data to ThingSpeak Channel ====
168
169
170 [[image:image-20230802112413-9.png]]
171
172 [[image:image-20230802112413-10.png]]
173
174
175 (% style="color:blue" %)**In MQTT.fx, we can publish below info:**
176
177 * (% style="color:#037691" %)**Topic:**(%%) channels/YOUR_CHANNEL_ID/publish
178
179 * (% style="color:#037691" %)**Payload:**(%%) field1=63&field2=67&status=MQTTPUBLISH
180
181 Where 63 and 67 are the value to be published to field1 & field2.
182
183
184 (% style="color:blue" %)**Result: **
185
186 [[image:image-20230802112413-11.png||height="539" width="901"]]
187
188
189 === 3.3.3 Configure NB-IoT Sensor for connection ===
190
191 ==== 3.3.3.1 AT Commands: ====
192
193
194 In the NB-IoT, we can run below commands so to publish the channels like MQTT.fx
195
196 * (% style="color:blue" %)**AT+PRO=3,1** (%%) ~/~/ Set to use ThingSpeak Server and Related Payload
197
198 * (% style="color:blue" %)**AT+CLIENT=<Your ThingSpeak MQTT ClientID>**
199
200 * (% style="color:blue" %)**AT+UNAME=<Your ThingSpeak MQTT User Name>**
201
202 * (% style="color:blue" %)**AT+PWD=<Your ThingSpeak MQTT Password>**
203
204 * (% style="color:blue" %)**AT+PUBTOPIC=<YOUR_CHANNEL_ID>**
205
206 * (% style="color:blue" %)**AT+SUBTOPIC=<YOUR_CHANNEL_ID>**
207
208 ==== 3.3.3.2 Uplink Examples ====
209
210
211 [[image:image-20230816201942-1.png]]
212
213 For SE01-NB
214
215 For DDS20-NB
216
217 For DDS45-NB
218
219 For DDS75-NB
220
221 For NMDS120-NB
222
223 For SPH01-NB
224
225 For NLM01-NB
226
227 For NMDS200-NB
228
229 For CPN01-NB
230
231 For DS03A-NB
232
233 For SN50V3-NB
234
235
236 ==== 3.3.3.3 Map fields to sensor value ====
237
238
239 When NB-IoT sensor upload to ThingSpeak. The payload already specify which fileds related to which sensor value. Use need to create fileds in Channels Settings. with name so to see the value correctly.
240
241
242 [[image:image-20230802112413-12.png||height="504" width="1011"]]
243
244 [[image:image-20230802112413-13.png||height="331" width="978"]]
245
246
247 Below is the NB-IoT Product Table show the mapping.
248
249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:1424px" %)
250 |(% style="background-color:#4f81bd; width:143px" %) |(% style="background-color:#4f81bd; color:white; width:103px" %)Field1|(% style="background-color:#4f81bd; color:white; width:102px" %)Field2|(% style="background-color:#4f81bd; color:white; width:157px" %)Field3|(% style="background-color:#4f81bd; color:white; width:154px" %)Field4|(% style="background-color:#4f81bd; color:white; width:153px" %)Field5|(% style="background-color:#4f81bd; color:white; width:151px" %)Field6|(% style="background-color:#4f81bd; color:white; width:160px" %)Field7|(% style="background-color:#4f81bd; color:white; width:152px" %)Field8|(% style="background-color:#4f81bd; color:white; width:67px" %)Field9|(% style="background-color:#4f81bd; color:white; width:69px" %)Field10
251 |(% style="background-color:#4f81bd; color:white; width:143px" %)S31x-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
252 |(% style="background-color:#4f81bd; color:white; width:143px" %)SE01-NB|(% style="width:103px" %)Temperature |(% style="width:102px" %)Humidity|(% style="width:157px" %)conduct|(% style="width:154px" %)dielectric_constant|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
253 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS20-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
254 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS45-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
255 |(% style="background-color:#4f81bd; color:white; width:143px" %)DDS75-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
256 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS120-NB|(% style="width:103px" %)distance|(% style="width:102px" %)Battery|(% style="width:157px" %)RSSI|(% style="width:154px" %) |(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
257 |(% rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SPH01-NB|(% style="width:103px" %)ph|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
258 |(% style="background-color:#4f81bd; color:white; width:143px" %)NLM01-NB|(% style="width:103px" %)Humidity|(% style="width:102px" %)Temperature|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
259 |(% style="background-color:#4f81bd; color:white; width:143px" %)NMDS200-NB|(% style="width:103px" %)distance1|(% style="width:102px" %)distance2|(% style="width:157px" %)Battery|(% style="width:154px" %)RSSI|(% style="width:153px" %) |(% style="width:151px" %) |(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
260 |(% style="background-color:#4f81bd; color:white; width:143px" %)CPN01-NB|(% style="width:103px" %)alarm|(% style="width:102px" %)count|(% style="width:157px" %)door open duration|(% style="width:154px" %)calc flag|(% style="width:153px" %)Battery|(% style="width:151px" %)RSSI|(% style="width:160px" %) |(% style="width:152px" %) |(% style="width:67px" %) |(% style="width:69px" %)
261 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)DS03A-NB|(% colspan="1" rowspan="1" style="width:103px" %)level|(% colspan="1" rowspan="1" style="width:102px" %)alarm|(% colspan="1" rowspan="1" style="width:157px" %)pb14door open num|(% colspan="1" rowspan="1" style="width:154px" %)pb14 last open time|(% colspan="1" rowspan="1" style="width:153px" %)pb15 level status|(% colspan="1" rowspan="1" style="width:151px" %)pb15 alarm status|(% colspan="1" rowspan="1" style="width:160px" %)pb15 door open num|(% colspan="1" rowspan="1" style="width:152px" %)pb15 last open time|(% colspan="1" rowspan="1" style="width:67px" %)Battery|(% colspan="1" rowspan="1" style="width:69px" %)RSSI
262 |(% colspan="1" rowspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod1|(% colspan="1" rowspan="1" style="width:103px" %)mod|(% colspan="1" rowspan="1" style="width:102px" %)Battery|(% colspan="1" rowspan="1" style="width:157px" %)RSSI|(% colspan="1" rowspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" rowspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" rowspan="1" style="width:151px" %)adc0|(% colspan="1" rowspan="1" style="width:160px" %)Temperature |(% colspan="1" rowspan="1" style="width:152px" %)Humidity|(% colspan="1" rowspan="1" style="width:67px" %) |(% colspan="1" rowspan="1" style="width:69px" %)
263 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod2|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc0|(% colspan="1" style="width:160px" %)distance|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
264 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod3|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)adc0|(% colspan="1" style="width:153px" %)exit_state/input PA4|(% colspan="1" style="width:151px" %)adc1|(% colspan="1" style="width:160px" %)Temperature|(% colspan="1" style="width:152px" %)Humidity|(% colspan="1" style="width:67px" %)adc4|(% colspan="1" style="width:69px" %)
265 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod4|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)DS18B20 Temp2|(% colspan="1" style="width:152px" %)DS18B20 Temp3|(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
266 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod5|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)DS18B20 Temp|(% colspan="1" style="width:153px" %)adc0|(% colspan="1" style="width:151px" %)exit_state/input PA4|(% colspan="1" style="width:160px" %)Weight|(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
267 |(% colspan="1" style="background-color:#4f81bd; color:white; width:143px" %)SN50V3-NB mod6|(% colspan="1" style="width:103px" %)mod|(% colspan="1" style="width:102px" %)Battery|(% colspan="1" style="width:157px" %)RSSI|(% colspan="1" style="width:154px" %)count|(% colspan="1" style="width:153px" %) |(% colspan="1" style="width:151px" %) |(% colspan="1" style="width:160px" %) |(% colspan="1" style="width:152px" %) |(% colspan="1" style="width:67px" %) |(% colspan="1" style="width:69px" %)
268
269 == 3.4 [[Datacake>>https://datacake.co/]] ==
270
271
272 (% class="wikigeneratedid" %)
273 Dragino NB-IoT sensors has its template in **[[Datacake>>https://datacake.co/]]** Platform. There are two version for NB Sensor,
274
275
276 (% class="wikigeneratedid" %)
277 As example for S31B-NB. there are two versions: **S31B-NB-1D and S31B-NB-GE.**
278
279 * (% style="color:blue" %)**S31B-NB-1D**(%%): This version have pre-configure DataCake connection. User just need to Power on this device, it will auto connect send data to DataCake Server.
280
281 * (% style="color:blue" %)**S31B-NB-GE**(%%): This verson doesn't have pre-configure Datacake connection. User need to enter the AT Commands to connect to Datacake. See below for instruction.
282
283 === 3.4.1 For device Already has template ===
284
285 ==== 3.4.1.1 Create Device ====
286
287 (% style="color:blue" %)**Add Device**(%%) in DataCake.
288
289 [[image:image-20230808162301-1.png||height="453" width="952"]]
290
291
292 [[image:image-20230808162342-2.png||height="541" width="952"]]
293
294
295 (% style="color:blue" %)**Choose the correct model**(%%) from template.
296
297 [[image:image-20230808162421-3.png]]
298
299
300 (% style="color:blue" %)**Fill Device ID**(%%). The device ID needs to be filled in with IMEI, and a prefix of(% style="color:blue" %)** 'f' **(%%)needs to be added.
301
302 [[image:image-20230808163612-7.png||height="549" width="952"]]
303
304 [[image:image-20230808163035-5.png]]
305
306 [[image:image-20230808163049-6.png||height="544" width="926"]]
307
308
309 === 3.4.2 For Device already registered in DataCake before shipped ===
310
311 ==== 3.4.2.1 Scan QR Code to get the device info ====
312
313
314 Users can use their phones or computers to scan QR codes to obtain device data information.
315
316 [[image:image-20230808170051-8.png||height="255" width="259"]]
317
318 [[image:image-20230808170548-9.png]]
319
320
321 ==== 3.4.2.2 Claim Device to User Account ====
322
323
324 By Default, the device is registered in Dragino's DataCake Account. User can Claim it to his account.
325
326
327 === 3.4.3 Manual Add Decoder in DataCake ( don't use the template in DataCake) ===
328
329
330 **Step1: Add a device**
331
332 [[image:image-20240129170024-1.png||height="330" width="900"]]
333
334
335 **Step2: Choose your device type,please select dragino NB-IOT device**
336
337 [[image:image-20240129170216-2.png||height="534" width="643"]]
338
339
340 **Step3: Choose to create a new device**
341
342 [[image:image-20240129170539-3.png||height="459" width="646"]]
343
344
345 **Step4: Fill in the device ID of your NB device**
346
347 [[image:image-20240202111546-1.png||height="378" width="651"]]
348
349
350 **Step5: Please select your device plan according to your needs and complete the creation of the device**
351
352 [[image:image-20240129171236-6.png||height="450" width="648"]]
353
354
355 **Step6: Please add the decoder at the payload decoder of the device configuration.**
356
357 **Decoder location:**[[dragino-end-node-decoder/Datacake-Dragino_NB at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Datacake-Dragino_NB]]
358
359 [[image:image-20240129172056-7.png||height="457" width="816"]]
360
361 [[image:image-20240129173116-9.png||height="499" width="814"]]
362
363
364 **Step7: Add the output of the decoder as a field**
365
366 [[image:image-20240129173541-10.png||height="592" width="968"]]
367
368
369 **Step8: Customize the dashboard and use fields as parameters of the dashboard**
370
371 [[image:image-20240129174518-11.png||height="147" width="1042"]]
372
373 [[image:image-20240129174657-12.png||height="538" width="916"]]
374
375 [[image:image-20240129174840-13.png||height="536" width="750"]]
376
377
378 === 3.4.4 For device have not configured to connect to DataCake ===
379
380
381 (% class="lead" %)
382 Use AT command for connecting to DataCake
383
384 (% style="color:blue" %)**AT+PRO=2,0**
385
386 (% style="color:blue" %)**AT+SERVADDR=67.207.76.90,4445**
387
388
389 == 3.5 Node-Red (via MQTT) ==
390
391 === 3.5.1 Configure [[Node-Red>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]] ===
392
393
394 Take S31-NB UDP protocol as an example.
395
396 Dragino provides input flow examples for the sensors.
397
398 User can download the required JSON file through Dragino Node-RED input flow template.
399
400 Download sample JSON file link: [[https:~~/~~/www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0>>url:https://www.dropbox.com/sh/mduw85jcuwsua22/AAAvwPhg9z6dLjJhmZjqBf_ma?dl=0]]
401
402 We can directly import the template.
403
404 The templates for S31-NB and NB95S31B are the same.
405
406
407 [[image:image-20230809173127-4.png]]
408
409
410 Please select the NB95S31B template.
411
412 [[image:image-20230809173310-5.png||height="558" width="926"]]
413
414 [[image:image-20230809173438-6.png]]
415
416 [[image:image-20230809173800-7.png]]
417
418
419 Successfully imported template.
420
421 [[image:image-20230809173835-8.png||height="515" width="860"]]
422
423
424 Users can set UDP port.
425
426 [[image:image-20230809174053-9.png]]
427
428
429 === 3.5.2 Simulate Connection ===
430
431
432 We have completed the configuration of UDP. We can try sending packets to node red.
433
434 [[image:image-20230810083934-1.png]]
435
436 [[image:image-20230810084048-2.png||height="535" width="1052"]]
437
438
439 === 3.5.3 Configure NB-IoT Sensors ===
440
441
442 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
443 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
444 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
445 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
446 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
447 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
448
449 == 3.6 ThingsBoard.Cloud (via MQTT) ==
450
451 === 3.6.1 Configure ThingsBoard ===
452
453 ==== 3.6.1.1 Create Device ====
454
455
456 Create a New Device in [[ThingsBoard>>url:https://thingsboard.cloud/]]. Record Device Name which is used for MQTT connection.
457
458 [[image:image-20230802112413-32.png||height="583" width="1066"]]
459
460
461 ==== 3.6.1.2 Create Uplink & Downlink Converter ====
462
463
464 (% style="color:blue" %)**Uplink Converter**
465
466 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
467
468 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“MQTT Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
469
470 [[image:image-20230802112413-33.png||height="597" width="1061"]]
471
472
473 (% style="color:blue" %)**Downlink Converter**
474
475 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external MQTT broke
476
477 [[image:image-20230802112413-34.png||height="598" width="1063"]]
478
479 (% style="color:red" %)**Note: Our device payload is already human readable data. Therefore, users do not need to write decoders. Simply create by default.**
480
481
482 ==== 3.6.1.3 MQTT Integration Setup ====
483
484
485 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“MQTT Integration”**(%%), select type (% style="color:blue" %)**MQTT**;
486
487 [[image:image-20230802112413-35.png||height="597" width="1062"]]
488
489
490 * The next steps is to add the recently created uplink and downlink converters;
491
492 [[image:image-20230802112413-36.png||height="598" width="1062"]]
493
494 [[image:image-20230802112413-37.png||height="598" width="1064"]]
495
496
497 (% style="color:blue" %)**Add a topic filter:**
498
499 Consistent with the theme of the node setting.
500
501 You can also select an MQTT QoS level. We use MQTT QoS level 0 (At most once) by default;
502
503 [[image:image-20230802112413-38.png||height="598" width="1064"]]
504
505
506 === 3.6.2 Simulate with MQTT.fx ===
507
508
509 [[image:image-20230802112413-39.png]]
510
511 [[image:image-20230802112413-40.png||height="525" width="980"]]
512
513
514 === 3.6.3 Configure NB-IoT Sensor ===
515
516
517 (% style="color:blue" %)**AT Commands**
518
519 * (% style="color:#037691" %)**AT+PRO=3,3  **(%%)** **~/~/ Use MQTT to connect to ThingsBoard. Payload Type set to 3.
520
521 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>**
522
523 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>**
524
525 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
526
527 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
528
529 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
530
531 Test Uplink by click the button for 1 second
532
533 [[image:image-20230802112413-41.png||height="496" width="828"]]
534
535 [[image:image-20230802112413-42.png]]
536
537 [[image:image-20230802112413-43.png||height="407" width="825"]]
538
539
540
541 == 3.7 ThingsBoard.Cloud (via COAP) ==
542
543 === 3.7.1 Configure ThingsBoard ===
544
545 ==== 3.7.1.1 Create Uplink & Downlink Converter ====
546
547
548 (% style="color:blue" %)**Uplink Converter**
549
550 The purpose of the decoder function is to parse the incoming data and metadata to a format that ThingsBoard can consume. deviceName and deviceType are required, while attributes and telemetry are optional. Attributes and telemetry are flat key-value objects. Nested objects are not supported.
551
552 To create an uplink converter go to the (% style="color:blue" %)**Integrations center**(%%) -> (% style="color:blue" %)**Data converters**(%%) page and click (% style="color:blue" %)**“plus”** (%%)button. Name it (% style="color:blue" %)**“COAP Uplink Converter”**(%%) and select type (% style="color:blue" %)"**Uplink"**(%%). Use debug mode for now.
553
554 [[image:image-20240729141300-1.png||height="552" width="1115"]]
555
556
557 (% style="color:blue" %)**Downlink Converter**
558
559 The Downlink converter transforming outgoing RPC message and then the Integration sends it to external COAP broker.
560
561 [[image:image-20240729142505-3.png||height="507" width="1023"]]
562
563
564 ==== 3.7.1.2 COAP Integration Setup ====
565
566
567 Go to the (% style="color:blue" %)**Integrations center**(%%) **->** (% style="color:blue" %)**Integrations page**(%%) and click **“(% style="color:blue" %)plus(%%)”** icon to add a new integration. Name it (% style="color:blue" %)**“CoAP Integration”**(%%), select type **COAP  **(% style="color:blue" %);
568
569 [[image:image-20240729144058-4.png||height="506" width="1021"]]
570
571
572 The next steps is to add the recently created uplink converters;
573
574 [[image:image-20240729150142-5.png||height="507" width="1023"]]
575
576
577 ==== 3.7.1.3 Add COAP Integration ====
578
579 ==== [[image:image-20240729161543-9.png||height="500" width="1009"]] ====
580
581
582 === 3.7.2 Node Configuration(Example: Connecting to the Thingsboard platform) ===
583
584 ==== 3.7.2.1 Instruction Description ====
585
586 * AT+PRO=1,0(HEX format uplink)  &AT+PRO=1,5(JSON format uplink)
587 * AT+SERVADDR=COAP Server Address,5683
588
589 Example: AT+SERVADDR=int.thingsboard.cloud,5683(The address is automatically generated when the COAP integration is created)
590
591 [[image:image-20240729172305-12.png||height="361" width="624"]]
592
593 Note:The port for the COAP protocol has been fixed to 5683
594
595
596 * AT+URL1=11,(% style="color:red" %)**character length**(%%),"Needs to be consistent with the CoAP endpoint URL in the platform"
597
598 If the module used is (% style="color:red" %)**BC660K, only one **(%%)URL directive needs to be configured,
599
600 e.g.
601
602 * AT+URL1=11,38, "i/faaaa241f-af4a-b780-4468-c671bb574858"
603
604 [[image:image-20240729172415-13.png||height="401" width="694"]]
605
606 If you are using a (% style="color:red" %)**BG95-M2**(%%) module, you need to configure (% style="color:red" %)**TWO**(%%) URL commands,
607
608 e.g.
609
610 * AT+URL1=11, "i"; 
611 * AT+URL2=11,"/faaaa241f-af4a-b780-4468-c671bb574858"
612
613 [[image:image-20240729172500-14.png||height="403" width="700"]]
614
615
616 == 3.8 [[Tago.io>>url:https://admin.tago.io/]] (via MQTT) ==
617
618 === 3.8.1 Create device & Get Credentials ===
619
620
621 We use MQTT Connection to send data to [[Tago.io>>url:https://admin.tago.io/]]. We need to Create Device and Get MQTT Credentials first.
622
623 [[image:image-20230802112413-44.png]]
624
625 [[image:image-20230802112413-45.png]]
626
627
628 Go to the Device section and create a device. Then, go to the section tokens and copy your device-token.
629
630 [[image:image-20230802112413-46.png]]
631
632
633 The device needs to enable the TLS mode and set the (% style="color:blue" %)**AT+TLSMOD=1,0**(%%) command.
634
635 (% style="color:blue" %)**On the Connection Profile window, set the following information:**
636
637 * (% style="color:#037691" %)**Profile Name: “Any name”**
638
639 * (% style="color:#037691" %)**Broker Address: mqtt.tago.io**
640
641 * (% style="color:#037691" %)**Broker Port: 8883**
642
643 * (% style="color:#037691" %)**Client ID: “Any value”**
644
645 (% style="color:blue" %)**On the section User credentials, set the following information:**
646
647 * (% style="color:#037691" %)**User Name: “Any value”** (%%) **~/~/ Tago validates your user by the token only**
648
649 * (% style="color:#037691" %)**Password: “Your device token”**
650
651 * (% style="color:#037691" %)**PUBTOPIC: “Any value”**
652
653 * (% style="color:#037691" %)**SUBTOPIC: “Any value”**
654
655 (% style="color:blue" %)**AT command:**
656
657 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%) **~/~/ hex format or json format**
658
659 * (% style="color:#037691" %)**AT+SUBTOPIC=<device name>or User Defined**
660
661 * (% style="color:#037691" %)**AT+PUBTOPIC=<device name>or User Defined**
662
663 * (% style="color:#037691" %)**AT+CLIENT=<device name> or User Defined**
664
665 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
666
667 * (% style="color:#037691" %)**AT+PWD=“Your device token”**
668
669 === 3.8.2 Simulate with MQTT.fx ===
670
671
672 [[image:image-20230802112413-52.png]]
673
674
675 [[image:image-20230808105300-2.png||height="553" width="1026"]]
676
677
678 Users can run the (% style="color:blue" %)**AT+PRO=3,5**(%%) command, and the payload will be converted to **JSON format**.
679
680 [[image:image-20230808105217-1.png||height="556" width="1031"]]
681
682 [[image:image-20230808105329-3.png]]
683
684
685 === 3.8.3 tago data ===
686
687
688 [[image:image-20230802112413-50.png||height="242" width="1037"]]
689
690 [[image:image-20230802112413-51.png||height="184" width="696"]]
691
692
693 == 3.9 TCP Connection ==
694
695
696 (% style="color:blue" %)**AT command:**
697
698 * (% style="color:#037691" %)**AT+PRO=4,0   ** (%%) ~/~/ Set to use TCP protocol to uplink(HEX format)
699
700 * (% style="color:#037691" %)**AT+PRO=4,1   ** (%%) ~/~/ Set to use TCP protocol to uplink(JSON format)
701
702 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port
703
704 (% style="color:blue" %)**Sensor Console Output when Uplink:**
705
706 [[image:image-20230807233631-1.png]]
707
708
709 (% style="color:blue" %)**See result in TCP Server:**
710
711 [[image:image-20230807233631-2.png]]
712
713
714 == 3.10 AWS Connection ==
715
716
717 Users can refer to [[Dragino NB device connection to AWS platform instructions>>http://wiki.dragino.com/xwiki/bin/view/Dragino%20NB%20device%20connection%20to%20AWS%20platform%20instructions/#H1.LogintotheplatformandfindIoTcore]]
718
719
720
721
722 = 4. MQTT/UDP/TCP downlink =
723
724 == 4.1 MQTT (via MQTT.fx) ==
725
726 Configure MQTT connections properly and send downlink commands to configure nodes through the Publish function of MQTT.fx//.//
727
728 **1.** Configure node MQTT connection (via MQTT.fx):
729
730 (% style="color:blue" %)**AT command:**
731
732 * (% style="color:#037691" %)**AT+PRO=3,0 or 3,5 ** (%%)~/~/ hex format or json format
733
734 * (% style="color:#037691" %)**AT+SUBTOPIC=User Defined**
735
736 * (% style="color:#037691" %)**AT+PUBTOPIC=User Defined**
737
738 * (% style="color:#037691" %)**AT+UNAME=<device name> or User Defined**
739
740 * (% style="color:#037691" %)**AT+PWD=<device name> or User Defined**
741
742 * (% style="color:#037691" %)**AT+SERVADDR=8.217.91.207,1883 ** (%%) ~/~/ to set MQTT server address and port
743
744 (% style="color:red" %)**Note: To uplink and downlink via MQTT.fx, we need set the publish topic and subscribe topic different, for example: AT+SUBTOPIC=SE01_SUB & AT+PUBTOPIC=SE01_PUB.**
745
746 [[image:image-20240417180145-2.png||height="434" width="587"]][[image:image-20240417180737-3.png||height="431" width="584"]]
747
748
749 **2. **When the node uplink packets, we can observe the data in MQTT.fx.
750
751 [[image:image-20240418144337-1.png||height="709" width="802"]]
752
753 **3. **The downlink command can be successfully sent only when the downlink port is open.
754
755 The downlink port is opened for about 3 seconds after uplink packets are sent.
756
757 Therefore, when we see the node uplink packets in the **Subscribe** window, we need to immediately switch to the **publish** window to publish the **hex format** command.
758
759 [[image:image-20240418150435-3.png||height="582" width="659"]]
760
761 [[image:image-20240418150932-4.png||height="492" width="1061"]]
762
763 (% style="color:red" %)**Note: Users can edit the hex command in advance. When the node uplink, directly click the publish button several times to increase the success rate of command configuration.**
764
765
766
767
768
769
770
771 = 5. FAQ =
772
773 == 5.1 What is the usage of Multi Sampling and One Uplink? ==
774
775
776 The NB series has the feature for Multi Sampling and one uplink. See one of them
777
778 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-NB_BN-IoT_Sensor_Node_User_Manual/#H2.5Multi-SamplingsandOneuplink]]
779
780 User can use this feature for below purpose:
781
782 1. **Reduce power consumption**. The NB-IoT transmit power is much more higher than the sensor sampling power. To save battery life, we can sampling often and send in one uplink.
783 1. Give more sampling data points.
784 1. Increase reliable in transmission. For example. If user set
785 1*. **AT+TR=1800** ~/~/ The unit is seconds, and the default is to record data once every 1800 seconds (30 minutes, the minimum can be set to 180 seconds)
786 1*. **AT+NOUD=24** ~/~/  The device uploads 24 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
787 1*. **AT+TDC=7200**  ~/~/ Uplink every 2 hours.
788 1*. this will mean each uplink will actually include the 6 uplink data (24 set data which cover 12 hours). So if device doesn't lost 6 continue data. There will not data lost.
789
790 == 5.2 Why the uplink JSON format is not standard? ==
791
792
793 The json format in uplink packet is not standard Json format. Below is the example. This is to make the payload as short as possible, due to NB-IoT transmit limition, a standard Json is not able to include 32 sets of sensors data with timestamp.
794
795 The firmware version released after 2024, Mar will use change back to use Json format. Detail please check changelog.
796
797 [[image:image-20240229233154-1.png]]
798
799
800 = 6. Trouble Shooting: =
801
802 == 6.1 Checklist for debuging Network Connection issue. Signal Strenght:99 issue. ==
803
804
805 There are many different providers provide NB-IoT service in the world. They might use different band, different APN & different operator configuration. Which makes connection to NB-IoT network is complicate.
806
807 If end device successfully attached NB-IoT Network, User can normally see the signal strengh as below (between 0~~31)
808
809 [[image:image-20240207002003-1.png]]
810
811
812 If fail to attach network, it will shows signal 99. as below:
813
814 [[image:image-20240207002129-2.png]]
815
816
817 (% class="lead" %)
818 When see this issue, below are the checklist:
819
820 * Does your SIM card support NB-IoT network? If SIM card doesn't not specify support NB-IoT clearly, normally it doesn't support. You need to confirm with your operator.
821 * Do you configure the correct APN? [[Check here for APN settings>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.1GeneralConfiguretoattachnetwork]].
822 * Do you lock the frequency band? This is the most case we see. [[Explain and Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.2SpeedUpNetworkAttachtime]].
823 * Check if the device is attached to Carrier network but reject. (need to check with operator).
824 * Check if the antenna is connected firmly.
825
826 If you have check all above and still fail. please send console log files (as many as possible) to [[support@dragino.com>>mailto:support@dragino.com]] so we can check.
827
828
829 == 6.2 Issue: "NBIOT did not respond" ==
830
831
832 (% class="box errormessage" %)
833 (((
834 11:24:22.397 [44596]NBIOT did not respond.
835 11:24:24.315 [46530]NBIOT did not respond.
836 11:24:26.256 [48464]NBIOT did not respond.
837 11:24:28.196 [50398]NBIOT did not respond.
838 11:24:30.115 [52332]NBIOT did not respond.
839 11:24:32.127 [54266]NBIOT did not respond.
840 11:24:32.127 [54299]Restart the module...
841 11:24:39.181 [61332]No response when shutting down
842 )))
843
844 This issue might due to initiate issue for NB-IoT module. In this case, please try:
845
846 1) Open Enclosure
847
848 2) Power off device by pull out the power on Jumper
849
850 3) Power on device by connect back the power jumper.
851
852 4) push reset button.
853
854 [[image:image-20240208001740-1.png]]
855
856
857 == 6.3 Issue: "Failed to readI MSI number" ==
858
859
860 (% class="box errormessage" %)
861 (((
862 [18170]Failed to read IMSI:1umber.
863 [20109]Failed to read IMSI numoer.
864 [22048]Failed to read IMSI number.
865 [29842lRestart the module...
866 )))
867
868 Make sure that the SIM card is insert in correct direction and device is power off/on during insert. Here is reference link: [[Insert SIM Card>>||anchor="H2.1GeneralConfiguretoattachnetwork"]].
869
870
871 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.4 Why sometime the AT Command is slow in reponse?(%%) ==
872
873
874 When the MCU is communicating with the NB-IoT module, the MCU response of AT Command will become slower, it might takes several seconds to response.
875
876 [[image:image-20240226111928-1.png]]
877
878
879 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.5 What is the Downlink Command by the NB device?(%%) ==
880
881 (% data-sider-select-id="bb6e9353-0c3f-473c-938d-4b416c9a03e6" %)
882 === UDP: ===
883
884 (% data-sider-select-id="14a4790e-7faa-4508-a4dd-7605a53f1cb3" %)
885 Its downlink command is the same as the AT command, but brackets are required.
886 Example:
887
888 {AT+TDC=300}
889
890
891 (% data-sider-select-id="90b80f1a-e924-4c8a-afc5-4429e019a657" %)
892 === MQTT: ===
893
894 Json:
895
896 The Json format in MQTT mode needs to be configured with all commands.
897 If you have configurations that need to be changed, please change them in the template below.
898 Template:
899
900 {
901 "AT+SERVADDR":"119.91.62.30,1882",
902 "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
903 "AT+UNAME":"usenamedragino",
904 "AT+PWD":"passworddragino",
905 "AT+PUBTOPIC":"123",
906 "AT+SUBTOPIC":"321",
907 "AT+TDC":"7200",
908 "AT+INTMOD":"0",
909 "AT+APN":"NULL",
910 "AT+5VT":"0",
911 "AT+PRO":"3,5",
912 "AT+TR":"900",
913 "AT+NOUD":"0",
914 "AT+CSQTIME":"5",
915 "AT+DNSTIMER":"0",
916 "AT+TLSMOD":"0,0",
917 "AT+MQOS":"0",
918 "AT+TEMPALARM1":"0",
919 "AT+TEMPALARM2":"10",
920 "AT+TEMPALARM3":"0"
921 }
922
923 Hex:
924
925 MQTT's hex format. Since many commands need to support strings, only a few commands are supported.
926
927 The supported commands are consistent with LoRaWAN's hex commands.
928 Please refer to the following link to obtain the hex format:
929
930 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
931
932
933 == (% data-sider-select-id="765eceff-93b1-40ee-800b-b7b7d022ef8a" %)6.6 How to obtain device logs?(%%) ==
934
935 * **AT Command: AT** **+GETLOG**
936
937 This command can be used to query upstream logs of data packets.
938
939 [[image:image-20240701114700-1.png]]
940
941
942
943
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0