Version 3.4 by Xiaoling on 2022/05/27 16:16

Show last authors
1 **Contents:**
2
3 {{toc/}}
4
5
6 = 1. Introduction =
7
8 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9
10 * No internet connection.
11 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
12
13 (((
14 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
15 )))
16
17 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
18 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
19 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
20
21 = 2. How it works =
22
23
24 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
25
26
27 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
28
29 (% class="box infomessage" %)
30 (((
31 AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
32 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
33 AT+DADDR=2602111D
34 )))
35
36 (((
37 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
38 )))
39
40 We need to input above keys in LG308 and enable ABP decryption.
41
42 [[image:image-20220527161119-1.png]]
43
44 Input the ABP keys in LG308
45
46
47 == 2.1 Upstream ==
48
49 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
50
51 (((
52 We can see the log of LG308 to know this packet arrive
53 )))
54
55 [[image:image-20220527161149-2.png]]
56
57 LG308 log by "logread -f" command
58
59
60 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
61
62 (% class="box" %)
63 (((
64 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
66 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
67 000001c
68 )))
69
70 * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
71 * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
72 * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
73
74 (% class="box" %)
75 (((
76 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
77 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
78 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
79 0000000 4646 4646 4646 3946 3030 3030 3030 3546
80 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
81 000001c
82 )))
83
84 (% class="box" %)
85 (((
86 (% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
87 )))
88
89
90 === 2.2.1 Decode Method ===
91
92 The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
93
94 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
95
96 (% class="box" %)
97 (((
98 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
99 0000000 4646 4646 4646 4537 3030 3030 3030 3438
100 0000010 ccd1 7fff 7fff 017f ff7f ff00         
101 000001c
102 )))
103
104 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
105
106 (% class="box" %)
107 (((
108 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
109 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
110 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
111 )))
112
113 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
114
115 (% class="box" %)
116 (((
117 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
118 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
119 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
120 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
121 )))
122
123 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
124
125
126 === 2.2.2 How to Decode My End Node ===
127
128 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
129
130 2/ Don't choose MQTT service, use LoRaWAN.
131
132 3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
133
134 4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
135
136 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
137 }}}
138
139 5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
140
141 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
142 * If you rename the file, please make it executable.
143 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
144 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
145 * the last line return is what will be used for MQTT
146 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
147
148 == 2.2 Downstream ==
149
150 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
151
152 The file should use below format:
153
154 (% class="mark" %)**dev_addr,imme/time,txt/hex,payload**
155
156 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
157
158 (% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
159
160 * dev_addr: Inptu the device address
161 * imme/time:
162 ** imme: send downstream immediately,For Class C end node.
163 ** time: send downstream after receive device's uplink. For Class A end node
164 * txt/hex:
165 ** txt: send payload in ASCII
166 ** hex: send payload in HEX
167 * payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
168 * txpw: Transmit Power. example: 20
169 * txbw: bandwidth:
170 ** 1: 500 kHz
171 ** 2: 250 kHz
172 ** 3: 125 kHz
173 ** 4: 62.5 kHz
174 * SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
175 * Frequency: Transmit Frequency: example: 923300000
176 * rxwindow: transmit on Rx1Window or Rx2Window.
177
178 Completely exmaple:
179
180 * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
181 * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
182
183 (% class="mark" %)**Downstream Frequency**
184
185 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
186
187 * EU868: 869.525Mhz, DR0(SF12BW125)
188 * US915: 923.3Mhz, SF12 BW500
189 * CN470: 505.3Mhz, SF12 BW125
190 * AU915: 923.3Mhz, SF12 BW500
191 * AS923: 923.2Mhz, SF10 BW125
192 * KR920: 921.9Mhz, SF12 BW125
193 * IN865: 866.55Mhz, SF10 BW125
194 * RU864: 869.1Mhz, SF12 BW125
195
196 (% class="mark" %)**Examples:**
197
198 (% class="box" %)
199 (((
200 we can use echo command to create files in LG308 for downstream.
201 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
202 )))
203
204 (% class="box" %)
205 (((
206 1) From logread -f of gateway, we can see it has been added as pedning.
207 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
208 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
209 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
210 )))
211
212 (% class="box" %)
213 (((
214 2) When there is an upstrea from end node, this downstream will be sent and shows:
215 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
216 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
217 )))
218
219 (% class="box" %)
220 (((
221 3) and the end node will got:
222 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
223 [5764827]TX on freq 905300000 Hz at DR 0
224 Update Interval: 60000 ms
225 [5765202]txDone
226 [5766193]RX on freq 927500000 Hz at DR 10
227 [5766225]rxTimeOut
228 [5767205]RX on freq 923300000 Hz at DR 8
229 [5767501]rxDone
230 Rssi= -41
231 Receive data
232 2:12345678    ~-~-> Hex
233 )))
234
235 (% class="box" %)
236 (((
237 4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
238 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
239 [5955879]TX on freq 904100000 Hz at DR 0
240 Update Interval: 60000 ms
241 [5956254]txDone
242 [5957246]RX on freq 923900000 Hz at DR 10
243 [5957278]rxTimeOut
244 [5958257]RX on freq 923300000 Hz at DR 8
245 [5958595]rxDone
246 Rssi= -37
247 Receive data
248 2:3132333435363738 ~-~-> ASCII string "12345678"
249 )))
250
251 = 3. Example 1: Communicate with LT-22222-L =
252
253 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
254
255 (% class="box" %)
256 (((
257 #!/bin/sh
258 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
259 #
260 # Hardware Prepare:
261 # 1. LT-22222-L x 2, both are configured to work in
262 #   a) Class C ;
263 # b) ABP Mode ;
264 # c) AT+Mod=1
265 # 2. LPS8,
266 #   a) Firmware version >
267 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
268 #   c) Lorawan server choose built-in
269 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
270 #
271 # How it works?
272 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
273 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
274 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
275 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
276 #   ( The purpose of this step is to show that the Device2 has already do the change there).
277 #
278 #  For example: If current status of Device1 and Device2 leds shows:
279 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
280 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
281 #
282 #  Step2  will cause below change:
283 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
284 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
285
286 #  Step3 will cause below change:
287 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
288 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
289 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
290 #  whether the Device 2 has been changed.
291 )))
292
293 ~1. Input keys
294
295 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
296
297 Input Keys in LPS8
298
299 2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
300
301 3. Choose Built-in server
302
303 [[image:https://wiki.dragino.com/images/thumb/d/d7/LPS8_LT-22222_2.png/600px-LPS8_LT-22222_2.png||height="264" width="600"]]
304
305 Choose Built-in server
306
307 4. Run the script.
308
309 [[image:https://wiki.dragino.com/images/thumb/3/39/LPS8_LT-22222_3.png/600px-LPS8_LT-22222_3.png||height="389" width="600"]]
310
311 Run the script
312
313 5. Output:
314
315 [[image:https://wiki.dragino.com/images/thumb/f/fe/LPS8_LT-22222_4.png/600px-LPS8_LT-22222_4.png||height="433" width="600"]]
316
317 Output from LPS8
318
319
320 = 4. Example 2: Communicate to TCP Server =
321
322 [[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
323
324 Network Structure
325
326
327 Full instruction video inlcude how to write scripts to fit server needed is here:
328
329
330 (% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
331
332 (% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
333
334 Assume we already set up ABP keys in the gateway:
335
336 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
337
338 Input Keys in LPS8
339
340 run socket tool in PC
341
342 [[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
343
344 Socket tool
345
346
347 Input Server address and port
348
349 [[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
350
351 Input Server address and port
352
353
354 See value receive in socket tool. :
355
356 [[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
357
358 value receive in socket tool
359
360 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0