Version 21.2 by Xiaoling on 2023/04/12 15:41

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25 = 2. How it works =
26
27
28 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
29
30
31 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
32
33 (% class="box infomessage" %)
34 (((
35 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
36 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
37 AT+DADDR=2602111D**
38 )))
39
40 (((
41 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
42
43
44 )))
45
46 We need to input above keys in LG308 and enable ABP decryption.
47
48
49 [[image:image-20220527161119-1.png]]
50
51
52 Input the ABP keys in LG308
53
54
55 == 2.1 Upstream ==
56
57
58 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
59
60 (((
61 We can see the log of LG308 to know this packet arrive.
62
63
64 )))
65
66 [[image:image-20220527161149-2.png]]
67
68
69 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
70
71
72
73 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
74
75 (% class="box" %)
76 (((
77 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
78 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
79 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
80 000001c
81 )))
82
83 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
84 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
85 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
86
87 (% class="box" %)
88 (((
89 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
90 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
91 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
92 0000000 4646 4646 4646 3946 3030 3030 3030 3546
93 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
94 000001c
95 )))
96
97
98 (% class="box" %)
99 (((
100 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
101 )))
102
103
104 === 2.2.1 Decode Method ===
105
106
107 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
108
109 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
110
111 (% class="box" %)
112 (((
113 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
114 0000000 4646 4646 4646 4537 3030 3030 3030 3438
115 0000010 ccd1 7fff 7fff 017f ff7f ff00         
116 000001c
117 )))
118
119
120 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
121
122 (% class="box" %)
123 (((
124 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
125 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
126 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
127 )))
128
129
130 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
131
132 (% class="box" %)
133 (((
134 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
135 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
136 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
137 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
138 )))
139
140 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
141
142
143 === 2.2.2 How to Decode My End Node ===
144
145
146 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
147
148 **2. **Don't choose MQTT service, use LoRaWAN.
149
150 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
151
152 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
153
154 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
155 }}}
156
157 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
158
159
160 (% style="color:red" %)
161 **Some notice:**
162
163 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
164 * If you rename the file, please make it executable.
165 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
166 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
167 * the last line return is what will be used for MQTT
168 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
169
170
171
172 == 2.2 Downstream ==
173
174
175 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
176
177 The file should use below format:
178
179 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
180
181
182 Since fimware > [[Dragino lgw~~-~~-build-v5.4.1668567157>>https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LG308-LG301/Firmware/Release/]] . Support more option
183
184 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow,Fport**
185
186 * **dev_addr:** Inptu the device address
187 * **imme/time:**
188 ** imme: send downstream immediately,For Class C end node.
189 ** time: send downstream after receive device's uplink. For Class A end node
190 * **txt/hex:**
191 ** txt: send payload in ASCII
192 ** hex: send payload in HEX
193 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
194 * **txpw:** Transmit Power. example: 20
195 * **txbw:** bandwidth:
196 ** 1: 500 kHz
197 ** 2: 250 kHz
198 ** 3: 125 kHz
199 ** 4: 62.5 kHz
200 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
201 * **Frequency:** Transmit Frequency: example: 923300000
202 * **rxwindow:** transmit on Rx1Window or Rx2Window.
203 * **Fport: **Transmit port,example:8
204
205 (% style="color:blue" %)**Completely exmaple:**
206
207 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
208 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2,8 > /var/iot/push/test
209
210 (% style="color:#037691" %)**Downstream Frequency:**
211
212 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
213
214 * EU868: 869.525Mhz, DR0(SF12BW125)
215 * US915: 923.3Mhz, SF12 BW500
216 * CN470: 505.3Mhz, SF12 BW125
217 * AU915: 923.3Mhz, SF12 BW500
218 * AS923: 923.2Mhz, SF10 BW125
219 * KR920: 921.9Mhz, SF12 BW125
220 * IN865: 866.55Mhz, SF10 BW125
221 * RU864: 869.1Mhz, SF12 BW125
222
223 (% style="color:#037691" %)**Examples:**
224
225 (% class="box" %)
226 (((
227 we can use echo command to create files in LG308 for downstream.
228 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
229
230
231 **1)** From logread -f of gateway, we can see it has been added as pedning.
232 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
233 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
234 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
235
236
237 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
238 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
239 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
240
241
242 **3)** and the end node will got:
243 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
244 [5764827]TX on freq 905300000 Hz at DR 0
245 Update Interval: 60000 ms
246 [5765202]txDone
247 [5766193]RX on freq 927500000 Hz at DR 10
248 [5766225]rxTimeOut
249 [5767205]RX on freq 923300000 Hz at DR 8
250 [5767501]rxDone
251 Rssi= -41
252 Receive data
253 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
254
255
256 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
257 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
258 [5955879]TX on freq 904100000 Hz at DR 0
259 Update Interval: 60000 ms
260 [5956254]txDone
261 [5957246]RX on freq 923900000 Hz at DR 10
262 [5957278]rxTimeOut
263 [5958257]RX on freq 923300000 Hz at DR 8
264 [5958595]rxDone
265 Rssi= -37
266 Receive data
267 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
268 )))
269
270
271 = 3. Example 1: Communicate with LT-22222-L =
272
273
274 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
275
276 (% class="box" %)
277 (((
278 //#!/bin/sh
279 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
280 #
281 # Hardware Prepare:
282 # 1. LT-22222-L x 2, both are configured to work in
283 #   a) Class C ;
284 # b) ABP Mode ;
285 # c) AT+Mod=1
286 # 2. LPS8,
287 #   a) Firmware version >
288 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
289 #   c) Lorawan server choose built-in
290 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
291 #
292 # How it works?
293 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
294 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
295 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
296 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
297 #   ( The purpose of this step is to show that the Device2 has already do the change there).
298 #
299 #  For example: If current status of Device1 and Device2 leds shows:
300 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
301 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
302 #
303 #  Step2  will cause below change:
304 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
305 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
306
307 #  Step3 will cause below change:
308 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
309 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
310 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
311 #  whether the Device 2 has been changed.//
312 )))
313
314
315 (% style="color:blue" %)**1. Input keys**
316
317
318 [[image:image-20220527162450-3.png]]
319
320 Input Keys in LPS8
321
322
323
324 (% style="color:blue" %)**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
325
326
327 (% style="color:blue" %)**3. Choose Built-in server**
328
329
330 [[image:image-20220527162518-4.png]]
331
332 Choose Built-in server
333
334
335
336 (% style="color:blue" %)**4. Run the script.**
337
338
339 [[image:image-20220722115213-2.png]]
340
341 Run the script
342
343
344
345 (% style="color:blue" %)**5. Output:**
346
347
348 [[image:image-20220722115133-1.png]]
349
350 Output from LPS8
351
352
353 = 4. Example 2: Communicate to TCP Server =
354
355
356 [[image:image-20220527162648-7.png]]
357
358 Network Structure
359
360
361 Full instruction video inlcude how to write scripts to fit server needed is here:
362
363
364 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
365
366
367 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
368
369
370 Assume we already set up ABP keys in the gateway:
371
372 [[image:image-20220527162852-8.png]]
373
374 Input Keys in LPS8
375
376
377
378 (% style="color:blue" %)**run socket tool in PC**
379
380
381 [[image:image-20220527163028-9.png]]
382
383
384 Socket tool
385
386
387
388 (% style="color:blue" %)**Input Server address and port**
389
390
391 [[image:image-20220527163106-10.png]]
392
393 Input Server address and port
394
395
396
397 (% style="color:blue" %)**See value receive in socket tool:**
398
399
400 [[image:image-20220527163144-11.png]]
401
402 value receive in socket tool
403
404
405 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0