Version 18.5 by Xiaoling on 2022/07/22 11:59

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25
26
27 = 2. How it works =
28
29
30 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
31
32
33 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
34
35 (% class="box infomessage" %)
36 (((
37 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
38 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
39 AT+DADDR=2602111D**
40 )))
41
42 (((
43 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
44
45
46 )))
47
48 We need to input above keys in LG308 and enable ABP decryption.
49
50 [[image:image-20220527161119-1.png]]
51
52 Input the ABP keys in LG308
53
54
55
56 == 2.1 Upstream ==
57
58
59 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
60
61 (((
62 We can see the log of LG308 to know this packet arrive
63 )))
64
65 [[image:image-20220527161149-2.png]]
66
67 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
68
69
70 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
71
72 (% class="box" %)
73 (((
74 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
75 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
76 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
77 000001c
78 )))
79
80 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
81 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
82 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
83
84
85
86
87 (% class="box" %)
88 (((
89 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
90 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
91 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
92 0000000 4646 4646 4646 3946 3030 3030 3030 3546
93 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
94 000001c
95 )))
96
97
98 (% class="box" %)
99 (((
100 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
101 )))
102
103
104
105 === 2.2.1 Decode Method ===
106
107
108 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
109
110 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
111
112 (% class="box" %)
113 (((
114 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
115 0000000 4646 4646 4646 4537 3030 3030 3030 3438
116 0000010 ccd1 7fff 7fff 017f ff7f ff00         
117 000001c
118 )))
119
120
121 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
122
123 (% class="box" %)
124 (((
125 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
126 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
127 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
128 )))
129
130
131 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
132
133 (% class="box" %)
134 (((
135 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
136 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
137 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
138 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
139 )))
140
141 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
142
143
144
145 === 2.2.2 How to Decode My End Node ===
146
147
148 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
149
150 **2. **Don't choose MQTT service, use LoRaWAN.
151
152 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
153
154 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
155
156 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
157 }}}
158
159 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
160
161
162 (% style="color:red" %)
163 **Some notice:**
164
165 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
166 * If you rename the file, please make it executable.
167 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
168 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
169 * the last line return is what will be used for MQTT
170 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
171
172
173
174 == 2.2 Downstream ==
175
176
177 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
178
179 The file should use below format:
180
181 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
182
183 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
184
185 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
186
187 * **dev_addr:** Inptu the device address
188 * **imme/time:**
189 ** imme: send downstream immediately,For Class C end node.
190 ** time: send downstream after receive device's uplink. For Class A end node
191 * **txt/hex:**
192 ** txt: send payload in ASCII
193 ** hex: send payload in HEX
194 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
195 * **txpw:** Transmit Power. example: 20
196 * **txbw:** bandwidth:
197 ** 1: 500 kHz
198 ** 2: 250 kHz
199 ** 3: 125 kHz
200 ** 4: 62.5 kHz
201 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
202 * **Frequency:** Transmit Frequency: example: 923300000
203 * **rxwindow:** transmit on Rx1Window or Rx2Window.
204
205
206 (% style="color:blue" %)**Completely exmaple:**
207
208 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
209 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
210
211
212 (% style="color:#037691" %)**Downstream Frequency**
213
214 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
215
216 * EU868: 869.525Mhz, DR0(SF12BW125)
217 * US915: 923.3Mhz, SF12 BW500
218 * CN470: 505.3Mhz, SF12 BW125
219 * AU915: 923.3Mhz, SF12 BW500
220 * AS923: 923.2Mhz, SF10 BW125
221 * KR920: 921.9Mhz, SF12 BW125
222 * IN865: 866.55Mhz, SF10 BW125
223 * RU864: 869.1Mhz, SF12 BW125
224
225
226 (% style="color:#037691" %)**Examples:**
227
228 (% class="box" %)
229 (((
230 we can use echo command to create files in LG308 for downstream.
231 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
232
233
234 **1)** From logread -f of gateway, we can see it has been added as pedning.
235 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
236 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
237 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
238
239
240 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
241 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
242 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
243
244
245 **3)** and the end node will got:
246 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
247 [5764827]TX on freq 905300000 Hz at DR 0
248 Update Interval: 60000 ms
249 [5765202]txDone
250 [5766193]RX on freq 927500000 Hz at DR 10
251 [5766225]rxTimeOut
252 [5767205]RX on freq 923300000 Hz at DR 8
253 [5767501]rxDone
254 Rssi= -41
255 Receive data
256 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
257
258
259 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
260 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
261 [5955879]TX on freq 904100000 Hz at DR 0
262 Update Interval: 60000 ms
263 [5956254]txDone
264 [5957246]RX on freq 923900000 Hz at DR 10
265 [5957278]rxTimeOut
266 [5958257]RX on freq 923300000 Hz at DR 8
267 [5958595]rxDone
268 Rssi= -37
269 Receive data
270 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
271 )))
272
273
274
275 = 3. Example 1: Communicate with LT-22222-L =
276
277
278 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
279
280 (% class="box" %)
281 (((
282 //#!/bin/sh
283 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
284 #
285 # Hardware Prepare:
286 # 1. LT-22222-L x 2, both are configured to work in
287 #   a) Class C ;
288 # b) ABP Mode ;
289 # c) AT+Mod=1
290 # 2. LPS8,
291 #   a) Firmware version >
292 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
293 #   c) Lorawan server choose built-in
294 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
295 #
296 # How it works?
297 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
298 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
299 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
300 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
301 #   ( The purpose of this step is to show that the Device2 has already do the change there).
302 #
303 #  For example: If current status of Device1 and Device2 leds shows:
304 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
305 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
306 #
307 #  Step2  will cause below change:
308 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
309 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
310
311 #  Step3 will cause below change:
312 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
313 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
314 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
315 #  whether the Device 2 has been changed.//
316 )))
317
318
319 **~1. Input keys**
320
321 [[image:image-20220527162450-3.png]]
322
323 Input Keys in LPS8
324
325
326 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
327
328
329 **3. Choose Built-in server**
330
331 [[image:image-20220527162518-4.png]]
332
333 Choose Built-in server
334
335
336 **4. Run the script.**
337
338 [[image:image-20220722115213-2.png]]
339
340 Run the script
341
342
343 **5. Output:**
344
345 [[image:image-20220722115133-1.png]]
346
347 Output from LPS8
348
349
350
351 = 4. Example 2: Communicate to TCP Server =
352
353
354 [[image:image-20220527162648-7.png]]
355
356 Network Structure
357
358
359 Full instruction video inlcude how to write scripts to fit server needed is here:
360
361
362 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
363
364
365 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
366
367
368 Assume we already set up ABP keys in the gateway:
369
370 [[image:image-20220527162852-8.png]]
371
372 Input Keys in LPS8
373
374
375
376 **run socket tool in PC**
377
378 [[image:image-20220527163028-9.png]]
379
380
381 Socket tool
382
383
384
385 **Input Server address and port**
386
387 [[image:image-20220527163106-10.png]]
388
389 Input Server address and port
390
391
392
393 **See value receive in socket tool:**
394
395 [[image:image-20220527163144-11.png]]
396
397 value receive in socket tool
398
399
400 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0