Version 16.9 by Xiaoling on 2022/07/22 11:47

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25
26 = 2. How it works =
27
28
29 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
30
31
32 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
33
34 (% class="box infomessage" %)
35 (((
36 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
37 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
38 AT+DADDR=2602111D**
39 )))
40
41 (((
42 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
43
44
45 )))
46
47 We need to input above keys in LG308 and enable ABP decryption.
48
49 [[image:image-20220527161119-1.png]]
50
51 Input the ABP keys in LG308
52
53
54 == 2.1 Upstream ==
55
56
57 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
58
59 (((
60 We can see the log of LG308 to know this packet arrive
61 )))
62
63 [[image:image-20220527161149-2.png]]
64
65 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
66
67
68 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
69
70 (% class="box" %)
71 (((
72 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
73 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
74 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
75 000001c
76 )))
77
78 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
79 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
80 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
81
82
83
84
85 (% class="box" %)
86 (((
87 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
88 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
89 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
90 0000000 4646 4646 4646 3946 3030 3030 3030 3546
91 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
92 000001c
93 )))
94
95 (% class="box" %)
96 (((
97 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
98 )))
99
100
101 === 2.2.1 Decode Method ===
102
103
104 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
105
106 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
107
108 (% class="box" %)
109 (((
110 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
111 0000000 4646 4646 4646 4537 3030 3030 3030 3438
112 0000010 ccd1 7fff 7fff 017f ff7f ff00         
113 000001c
114 )))
115
116
117 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
118
119 (% class="box" %)
120 (((
121 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
122 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
123 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
124 )))
125
126
127 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
128
129 (% class="box" %)
130 (((
131 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
132 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
133 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
134 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
135 )))
136
137 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
138
139
140
141 === 2.2.2 How to Decode My End Node ===
142
143
144 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
145
146 **2. **Don't choose MQTT service, use LoRaWAN.
147
148 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
149
150 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
151
152 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
153 }}}
154
155 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
156
157
158 (% style="color:red" %)
159 **Some notice:**
160
161 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
162 * If you rename the file, please make it executable.
163 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
164 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
165 * the last line return is what will be used for MQTT
166 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
167
168
169
170
171
172 == 2.2 Downstream ==
173
174
175 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
176
177 The file should use below format:
178
179 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
180
181 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
182
183 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
184
185 * **dev_addr:** Inptu the device address
186 * **imme/time:**
187 ** imme: send downstream immediately,For Class C end node.
188 ** time: send downstream after receive device's uplink. For Class A end node
189 * **txt/hex:**
190 ** txt: send payload in ASCII
191 ** hex: send payload in HEX
192 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
193 * **txpw:** Transmit Power. example: 20
194 * **txbw:** bandwidth:
195 ** 1: 500 kHz
196 ** 2: 250 kHz
197 ** 3: 125 kHz
198 ** 4: 62.5 kHz
199 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
200 * **Frequency:** Transmit Frequency: example: 923300000
201 * **rxwindow:** transmit on Rx1Window or Rx2Window.
202
203
204 (% style="color:blue" %)**Completely exmaple:**
205
206 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
207 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
208
209
210 (% style="color:#037691" %)**Downstream Frequency**
211
212 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
213
214 * EU868: 869.525Mhz, DR0(SF12BW125)
215 * US915: 923.3Mhz, SF12 BW500
216 * CN470: 505.3Mhz, SF12 BW125
217 * AU915: 923.3Mhz, SF12 BW500
218 * AS923: 923.2Mhz, SF10 BW125
219 * KR920: 921.9Mhz, SF12 BW125
220 * IN865: 866.55Mhz, SF10 BW125
221 * RU864: 869.1Mhz, SF12 BW125
222
223
224 (% style="color:#037691" %)**Examples:**
225
226 (% class="box" %)
227 (((
228 we can use echo command to create files in LG308 for downstream.
229 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
230
231
232 **1)** From logread -f of gateway, we can see it has been added as pedning.
233 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
234 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
235 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
236
237
238 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
239 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
240 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
241
242
243 **3)** and the end node will got:
244 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
245 [5764827]TX on freq 905300000 Hz at DR 0
246 Update Interval: 60000 ms
247 [5765202]txDone
248 [5766193]RX on freq 927500000 Hz at DR 10
249 [5766225]rxTimeOut
250 [5767205]RX on freq 923300000 Hz at DR 8
251 [5767501]rxDone
252 Rssi= -41
253 Receive data
254 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
255
256
257 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
258 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
259 [5955879]TX on freq 904100000 Hz at DR 0
260 Update Interval: 60000 ms
261 [5956254]txDone
262 [5957246]RX on freq 923900000 Hz at DR 10
263 [5957278]rxTimeOut
264 [5958257]RX on freq 923300000 Hz at DR 8
265 [5958595]rxDone
266 Rssi= -37
267 Receive data
268 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
269 )))
270
271
272 = 3. Example 1: Communicate with LT-22222-L =
273
274
275 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
276
277 (% class="box" %)
278 (((
279 //#!/bin/sh
280 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
281 #
282 # Hardware Prepare:
283 # 1. LT-22222-L x 2, both are configured to work in
284 #   a) Class C ;
285 # b) ABP Mode ;
286 # c) AT+Mod=1
287 # 2. LPS8,
288 #   a) Firmware version >
289 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
290 #   c) Lorawan server choose built-in
291 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
292 #
293 # How it works?
294 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
295 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
296 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
297 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
298 #   ( The purpose of this step is to show that the Device2 has already do the change there).
299 #
300 #  For example: If current status of Device1 and Device2 leds shows:
301 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
302 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
303 #
304 #  Step2  will cause below change:
305 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
306 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
307
308 #  Step3 will cause below change:
309 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
310 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
311 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
312 #  whether the Device 2 has been changed.//
313 )))
314
315
316 **~1. Input keys**
317
318 [[image:image-20220527162450-3.png]]
319
320 Input Keys in LPS8
321
322
323 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
324
325
326 **3. Choose Built-in server**
327
328 [[image:image-20220527162518-4.png]]
329
330 Choose Built-in server
331
332
333 **4. Run the script.**
334
335 [[image:image-20220527162552-5.png]]
336
337 Run the script
338
339
340 **5. Output:**
341
342 [[image:image-20220527162619-6.png]]
343
344 Output from LPS8
345
346
347 = 4. Example 2: Communicate to TCP Server =
348
349
350 [[image:image-20220527162648-7.png]]
351
352 Network Structure
353
354
355 Full instruction video inlcude how to write scripts to fit server needed is here:
356
357
358 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
359
360
361 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
362
363
364 Assume we already set up ABP keys in the gateway:
365
366 [[image:image-20220527162852-8.png]]
367
368 Input Keys in LPS8
369
370
371
372 **run socket tool in PC**
373
374 [[image:image-20220527163028-9.png]]
375
376
377 Socket tool
378
379
380
381 **Input Server address and port**
382
383 [[image:image-20220527163106-10.png]]
384
385 Input Server address and port
386
387
388
389 **See value receive in socket tool:**
390
391 [[image:image-20220527163144-11.png]]
392
393 value receive in socket tool
394
395
396 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0