Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25
26 = 2. How it works =
27
28
29 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
30
31
32 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
33
34 (% class="box infomessage" %)
35 (((
36 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
37 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
38 AT+DADDR=2602111D**
39 )))
40
41 (((
42 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
43
44
45 )))
46
47 We need to input above keys in LG308 and enable ABP decryption.
48
49 [[image:image-20220527161119-1.png]]
50
51 Input the ABP keys in LG308
52
53
54 == 2.1 Upstream ==
55
56
57 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
58
59 (((
60 We can see the log of LG308 to know this packet arrive
61 )))
62
63 [[image:image-20220527161149-2.png]]
64
65 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
66
67
68 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
69
70 (% class="box" %)
71 (((
72 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
73 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
74 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
75 000001c
76 )))
77
78 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
79 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
80 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
81
82 (% class="box" %)
83 (((
84 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
85 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
86 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
87 0000000 4646 4646 4646 3946 3030 3030 3030 3546
88 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
89 000001c
90 )))
91
92 (% class="box" %)
93 (((
94 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
95 )))
96
97
98 === 2.2.1 Decode Method ===
99
100
101 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
102
103 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
104
105 (% class="box" %)
106 (((
107 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
108 0000000 4646 4646 4646 4537 3030 3030 3030 3438
109 0000010 ccd1 7fff 7fff 017f ff7f ff00         
110 000001c
111 )))
112
113
114 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
115
116 (% class="box" %)
117 (((
118 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
119 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
120 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
121 )))
122
123
124 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
125
126 (% class="box" %)
127 (((
128 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
129 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
130 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
131 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
132 )))
133
134 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
135
136
137
138 === 2.2.2 How to Decode My End Node ===
139
140
141 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
142
143 **2. **Don't choose MQTT service, use LoRaWAN.
144
145 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
146
147 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
148
149 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
150 }}}
151
152 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
153
154
155 (% style="color:red" %)
156 **Some notice:**
157
158 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
159 * If you rename the file, please make it executable.
160 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
161 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
162 * the last line return is what will be used for MQTT
163 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
164
165 == 2.2 Downstream ==
166
167
168 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
169
170 The file should use below format:
171
172 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
173
174 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
175
176 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
177
178 * **dev_addr:** Inptu the device address
179 * **imme/time:**
180 ** imme: send downstream immediately,For Class C end node.
181 ** time: send downstream after receive device's uplink. For Class A end node
182 * **txt/hex:**
183 ** txt: send payload in ASCII
184 ** hex: send payload in HEX
185 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
186 * **txpw:** Transmit Power. example: 20
187 * **txbw:** bandwidth:
188 ** 1: 500 kHz
189 ** 2: 250 kHz
190 ** 3: 125 kHz
191 ** 4: 62.5 kHz
192 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
193 * **Frequency:** Transmit Frequency: example: 923300000
194 * **rxwindow:** transmit on Rx1Window or Rx2Window.
195
196
197 (% style="color:blue" %)**Completely exmaple:**
198
199 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
200 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
201
202
203 (% style="color:#037691" %)**Downstream Frequency**
204
205 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
206
207 * EU868: 869.525Mhz, DR0(SF12BW125)
208 * US915: 923.3Mhz, SF12 BW500
209 * CN470: 505.3Mhz, SF12 BW125
210 * AU915: 923.3Mhz, SF12 BW500
211 * AS923: 923.2Mhz, SF10 BW125
212 * KR920: 921.9Mhz, SF12 BW125
213 * IN865: 866.55Mhz, SF10 BW125
214 * RU864: 869.1Mhz, SF12 BW125
215
216
217 (% style="color:#037691" %)**Examples:**
218
219 (% class="box" %)
220 (((
221 we can use echo command to create files in LG308 for downstream.
222 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
223
224
225 **1)** From logread -f of gateway, we can see it has been added as pedning.
226 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
227 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
228 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
229
230
231 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
232 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
233 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
234
235
236 **3)** and the end node will got:
237 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
238 [5764827]TX on freq 905300000 Hz at DR 0
239 Update Interval: 60000 ms
240 [5765202]txDone
241 [5766193]RX on freq 927500000 Hz at DR 10
242 [5766225]rxTimeOut
243 [5767205]RX on freq 923300000 Hz at DR 8
244 [5767501]rxDone
245 Rssi= -41
246 Receive data
247 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
248
249
250 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
251 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
252 [5955879]TX on freq 904100000 Hz at DR 0
253 Update Interval: 60000 ms
254 [5956254]txDone
255 [5957246]RX on freq 923900000 Hz at DR 10
256 [5957278]rxTimeOut
257 [5958257]RX on freq 923300000 Hz at DR 8
258 [5958595]rxDone
259 Rssi= -37
260 Receive data
261 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
262 )))
263
264
265 = 3. Example 1: Communicate with LT-22222-L =
266
267
268 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
269
270 (% class="box" %)
271 (((
272 //#!/bin/sh
273 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
274 #
275 # Hardware Prepare:
276 # 1. LT-22222-L x 2, both are configured to work in
277 #   a) Class C ;
278 # b) ABP Mode ;
279 # c) AT+Mod=1
280 # 2. LPS8,
281 #   a) Firmware version >
282 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
283 #   c) Lorawan server choose built-in
284 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
285 #
286 # How it works?
287 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
288 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
289 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
290 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
291 #   ( The purpose of this step is to show that the Device2 has already do the change there).
292 #
293 #  For example: If current status of Device1 and Device2 leds shows:
294 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
295 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
296 #
297 #  Step2  will cause below change:
298 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
299 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
300
301 #  Step3 will cause below change:
302 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
303 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
304 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
305 #  whether the Device 2 has been changed.//
306 )))
307
308
309 **~1. Input keys**
310
311 [[image:image-20220527162450-3.png]]
312
313 Input Keys in LPS8
314
315
316 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
317
318
319 **3. Choose Built-in server**
320
321 [[image:image-20220527162518-4.png]]
322
323 Choose Built-in server
324
325
326 **4. Run the script.**
327
328 [[image:image-20220527162552-5.png]]
329
330 Run the script
331
332
333 **5. Output:**
334
335 [[image:image-20220527162619-6.png]]
336
337 Output from LPS8
338
339
340 = 4. Example 2: Communicate to TCP Server =
341
342
343 [[image:image-20220527162648-7.png]]
344
345 Network Structure
346
347
348 Full instruction video inlcude how to write scripts to fit server needed is here:
349
350
351 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
352
353
354 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
355
356
357 Assume we already set up ABP keys in the gateway:
358
359 [[image:image-20220527162852-8.png]]
360
361 Input Keys in LPS8
362
363
364
365 **run socket tool in PC**
366
367 [[image:image-20220527163028-9.png]]
368
369
370 Socket tool
371
372
373
374 **Input Server address and port**
375
376 [[image:image-20220527163106-10.png]]
377
378 Input Server address and port
379
380
381
382 **See value receive in socket tool:**
383
384 [[image:image-20220527163144-11.png]]
385
386 value receive in socket tool
387
388
389 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0