<
From version < 20.1 >
edited by Kilight Cao
on 2022/12/01 14:00
To version < 14.7 >
edited by Xiaoling
on 2022/06/01 11:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Kilight
1 +XWiki.Xiaoling
Content
... ... @@ -1,12 +1,10 @@
1 -**Table of Contents:**
1 + **Contents:**
2 2  
3 3  {{toc/}}
4 4  
5 5  
6 -
7 7  = 1. Introduction =
8 8  
9 -
10 10  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11 11  
12 12  * No internet connection.
... ... @@ -21,6 +21,7 @@
21 21  1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22 22  
23 23  
22 +
24 24  = 2. How it works =
25 25  
26 26  
... ... @@ -31,45 +31,35 @@
31 31  
32 32  (% class="box infomessage" %)
33 33  (((
34 -**AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
33 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
35 35  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
36 -AT+DADDR=2602111D**
35 +AT+DADDR=2602111D
37 37  )))
38 38  
39 39  (((
40 40  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
41 -
42 -
43 43  )))
44 44  
45 45  We need to input above keys in LG308 and enable ABP decryption.
46 46  
47 -
48 48  [[image:image-20220527161119-1.png]]
49 49  
50 -
51 51  Input the ABP keys in LG308
52 52  
53 53  
54 -
55 55  == 2.1 Upstream ==
56 56  
57 -
58 58  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
59 59  
60 60  (((
61 -We can see the log of LG308 to know this packet arrive.
62 -
63 -
54 +We can see the log of LG308 to know this packet arrive
64 64  )))
65 65  
66 66  [[image:image-20220527161149-2.png]]
67 67  
59 +LG308 log by "logread -f" command
68 68  
69 -LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
70 70  
71 -
72 -
73 73  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
74 74  
75 75  (% class="box" %)
... ... @@ -80,9 +80,9 @@
80 80  000001c
81 81  )))
82 82  
83 -* **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
84 -* **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
85 -* **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
72 +* RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
73 +* SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
74 +* Payload: 0xcc0c 0b63 0266 017f ff7f ff00
86 86  
87 87  (% class="box" %)
88 88  (((
... ... @@ -94,17 +94,14 @@
94 94  000001c
95 95  )))
96 96  
97 -
98 98  (% class="box" %)
99 99  (((
100 -(% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
88 +(% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
101 101  )))
102 102  
103 103  
104 -
105 105  === 2.2.1 Decode Method ===
106 106  
107 -
108 108  The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
109 109  
110 110  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
... ... @@ -117,7 +117,6 @@
117 117  000001c
118 118  )))
119 119  
120 -
121 121  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
122 122  
123 123  (% class="box" %)
... ... @@ -127,7 +127,6 @@
127 127  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
128 128  )))
129 129  
130 -
131 131  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
132 132  
133 133  (% class="box" %)
... ... @@ -141,27 +141,21 @@
141 141  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
142 142  
143 143  
144 -
145 145  === 2.2.2 How to Decode My End Node ===
146 146  
130 +1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
147 147  
148 -**1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
132 +2/ Don't choose MQTT service, use LoRaWAN.
149 149  
150 -**2. **Don't choose MQTT service, use LoRaWAN.
134 +3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
151 151  
152 -**3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
136 +4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
153 153  
154 -**4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
155 -
156 156  {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
157 157  }}}
158 158  
159 -**5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
141 +5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
160 160  
161 -
162 -(% style="color:red" %)
163 -**Some notice:**
164 -
165 165  * RSSI and SNR are added when gateway receive the packet, so there is always this field.
166 166  * If you rename the file, please make it executable.
167 167  * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
... ... @@ -172,7 +172,6 @@
172 172  
173 173  == 2.2 Downstream ==
174 174  
175 -
176 176  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
177 177  
178 178  The file should use below format:
... ... @@ -179,37 +179,35 @@
179 179  
180 180  (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
181 181  
159 +Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
182 182  
183 -Since fimware > [[Dragino lgw~~-~~-build-v5.4.1668567157>>https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LG308-LG301/Firmware/Release/]] . Support more option
184 -
185 185  (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
186 186  
187 -* **dev_addr:** Inptu the device address
188 -* **imme/time:**
163 +* dev_addr: Inptu the device address
164 +* imme/time:
189 189  ** imme: send downstream immediately,For Class C end node.
190 190  ** time: send downstream after receive device's uplink. For Class A end node
191 -* **txt/hex:**
167 +* txt/hex:
192 192  ** txt: send payload in ASCII
193 193  ** hex: send payload in HEX
194 -* **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
195 -* **txpw:** Transmit Power. example: 20
196 -* **txbw:** bandwidth:
170 +* payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
171 +* txpw: Transmit Power. example: 20
172 +* txbw: bandwidth:
197 197  ** 1: 500 kHz
198 198  ** 2: 250 kHz
199 199  ** 3: 125 kHz
200 200  ** 4: 62.5 kHz
201 -* **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
202 -* **Frequency:** Transmit Frequency: example: 923300000
203 -* **rxwindow:** transmit on Rx1Window or Rx2Window.
204 -* **Fport: **Transmit port,example:8
177 +* SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
178 +* Frequency: Transmit Frequency: example: 923300000
179 +* rxwindow: transmit on Rx1Window or Rx2Window.
205 205  
181 +Completely exmaple:
206 206  
207 -(% style="color:blue" %)**Completely exmaple:**
183 +* Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
184 +* New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
208 208  
209 -* **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
210 -* **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2,2 > /var/iot/push/test
211 211  
212 -(% style="color:#037691" %)**Downstream Frequency:**
187 +(% style="color:#037691" %)**Downstream Frequency**
213 213  
214 214  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
215 215  
... ... @@ -222,6 +222,7 @@
222 222  * IN865: 866.55Mhz, SF10 BW125
223 223  * RU864: 869.1Mhz, SF12 BW125
224 224  
200 +
225 225  (% style="color:#037691" %)**Examples:**
226 226  
227 227  (% class="box" %)
... ... @@ -228,20 +228,26 @@
228 228  (((
229 229  we can use echo command to create files in LG308 for downstream.
230 230  root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
207 +)))
231 231  
232 -
233 -**1)** From logread -f of gateway, we can see it has been added as pedning.
209 +(% class="box" %)
210 +(((
211 +1) From logread -f of gateway, we can see it has been added as pedning.
234 234  lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
235 235  lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
236 236  lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
215 +)))
237 237  
238 -
239 -**2)** When there is an upstrea from end node, this downstream will be sent and shows:
217 +(% class="box" %)
218 +(((
219 +2) When there is an upstrea from end node, this downstream will be sent and shows:
240 240  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
241 241  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
222 +)))
242 242  
243 -
244 -**3)** and the end node will got:
224 +(% class="box" %)
225 +(((
226 +3) and the end node will got:
245 245  [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
246 246  [5764827]TX on freq 905300000 Hz at DR 0
247 247  Update Interval: 60000 ms
... ... @@ -253,9 +253,11 @@
253 253  Rssi= -41
254 254  Receive data
255 255  (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
238 +)))
256 256  
257 -
258 -**4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
240 +(% class="box" %)
241 +(((
242 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
259 259  [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
260 260  [5955879]TX on freq 904100000 Hz at DR 0
261 261  Update Interval: 60000 ms
... ... @@ -270,15 +270,13 @@
270 270  )))
271 271  
272 272  
273 -
274 274  = 3. Example 1: Communicate with LT-22222-L =
275 275  
276 -
277 277  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
278 278  
279 279  (% class="box" %)
280 280  (((
281 -//#!/bin/sh
263 +#!/bin/sh
282 282  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
283 283  #
284 284  # Hardware Prepare:
... ... @@ -311,52 +311,41 @@
311 311  #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
312 312  #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
313 313  #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
314 -#  whether the Device 2 has been changed.//
296 +#  whether the Device 2 has been changed.
315 315  )))
316 316  
299 +~1. Input keys
317 317  
318 -(% style="color:blue" %)**1. Input keys**
319 -
320 -
321 321  [[image:image-20220527162450-3.png]]
322 322  
323 323  Input Keys in LPS8
324 324  
325 325  
306 +2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
326 326  
327 -(% style="color:blue" %)**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
308 +3. Choose Built-in server
328 328  
329 -
330 -(% style="color:blue" %)**3. Choose Built-in server**
331 -
332 -
333 333  [[image:image-20220527162518-4.png]]
334 334  
335 335  Choose Built-in server
336 336  
337 337  
315 +4. Run the script.
338 338  
339 -(% style="color:blue" %)**4. Run the script.**
317 +[[image:image-20220527162552-5.png]]
340 340  
341 -
342 -[[image:image-20220722115213-2.png]]
343 -
344 344  Run the script
345 345  
346 346  
322 +5. Output:
347 347  
348 -(% style="color:blue" %)**5. Output:**
324 +[[image:image-20220527162619-6.png]]
349 349  
350 -
351 -[[image:image-20220722115133-1.png]]
352 -
353 353  Output from LPS8
354 354  
355 355  
356 -
357 357  = 4. Example 2: Communicate to TCP Server =
358 358  
359 -
360 360  [[image:image-20220527162648-7.png]]
361 361  
362 362  Network Structure
... ... @@ -370,7 +370,6 @@
370 370  
371 371  (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
372 372  
373 -
374 374  Assume we already set up ABP keys in the gateway:
375 375  
376 376  [[image:image-20220527162852-8.png]]
... ... @@ -378,10 +378,8 @@
378 378  Input Keys in LPS8
379 379  
380 380  
351 +run socket tool in PC
381 381  
382 -(% style="color:blue" %)**run socket tool in PC**
383 -
384 -
385 385  [[image:image-20220527163028-9.png]]
386 386  
387 387  
... ... @@ -388,22 +388,17 @@
388 388  Socket tool
389 389  
390 390  
359 +Input Server address and port
391 391  
392 -(% style="color:blue" %)**Input Server address and port**
393 -
394 -
395 395  [[image:image-20220527163106-10.png]]
396 396  
397 397  Input Server address and port
398 398  
399 399  
366 +See value receive in socket tool. :
400 400  
401 -(% style="color:blue" %)**See value receive in socket tool:**
402 -
403 -
404 404  [[image:image-20220527163144-11.png]]
405 405  
406 406  value receive in socket tool
407 407  
408 -
409 409  If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
image-20220722115133-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -35.1 KB
Content
image-20220722115213-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0