<
From version < 14.7 >
edited by Xiaoling
on 2022/06/01 11:14
To version < 1.5 >
edited by Xiaoling
on 2022/05/12 17:52
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -8,40 +8,33 @@
8 8  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9 9  
10 10  * No internet connection.
11 -* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
11 +* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
12 12  
13 -(((
14 -The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
15 -)))
16 16  
14 +The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
15 +
17 17  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
18 18  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
19 -1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
18 +1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
20 20  
21 21  
22 -
23 23  = 2. How it works =
24 24  
25 25  
26 -(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
24 +Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]
27 27  
28 -
29 29  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
30 30  
31 -(% class="box infomessage" %)
32 -(((
33 -AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
28 +{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
34 34  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
35 35  AT+DADDR=2602111D
36 -)))
31 +}}}
37 37  
38 -(((
39 39  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
40 -)))
41 41  
42 42  We need to input above keys in LG308 and enable ABP decryption.
43 43  
44 -[[image:image-20220527161119-1.png]]
37 +[[image:https://wiki.dragino.com/images/thumb/5/55/LG308_MQTT_1.png/600px-LG308_MQTT_1.png||height="329" width="600"]]
45 45  
46 46  Input the ABP keys in LG308
47 47  
... ... @@ -50,11 +50,9 @@
50 50  
51 51  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
52 52  
53 -(((
54 54  We can see the log of LG308 to know this packet arrive
55 -)))
56 56  
57 -[[image:image-20220527161149-2.png]]
48 +[[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
58 58  
59 59  LG308 log by "logread -f" command
60 60  
... ... @@ -61,66 +61,54 @@
61 61  
62 62  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
63 63  
64 -(% class="box" %)
65 -(((
66 -root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
67 -0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
68 -0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
55 +{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
56 +0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
57 +0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
69 69  000001c
70 -)))
59 +}}}
71 71  
72 72  * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
73 73  * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
74 74  * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
75 75  
76 -(% class="box" %)
77 -(((
78 -(% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
79 -in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
80 -root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 +
66 +{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
67 +in LGT92, use AT+SEND=12:hello world to send ASCII string
68 +root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
81 81  0000000 4646 4646 4646 3946 3030 3030 3030 3546
82 -0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
70 +0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
83 83  000001c
84 -)))
72 +}}}
85 85  
86 -(% class="box" %)
87 -(((
88 -(% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
89 -)))
74 +{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
75 +}}}
90 90  
91 -
92 92  === 2.2.1 Decode Method ===
93 93  
94 -The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
79 +The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
95 95  
96 96  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
97 97  
98 -(% class="box" %)
99 -(((
100 -root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
83 +{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
101 101  0000000 4646 4646 4646 4537 3030 3030 3030 3438
102 -0000010 ccd1 7fff 7fff 017f ff7f ff00         
85 +0000010 ccd1 7fff 7fff 017f ff7f ff00
103 103  000001c
104 -)))
87 +}}}
105 105  
106 106  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
107 107  
108 -(% class="box" %)
109 -(((
110 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
91 +{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
111 111  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
112 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
113 -)))
93 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
94 +}}}
114 114  
115 115  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
116 116  
117 -(% class="box" %)
118 -(((
119 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
98 +{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
120 120  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
121 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
122 -"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
123 -)))
100 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
101 +"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
102 +}}}
124 124  
125 125  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
126 126  
... ... @@ -147,7 +147,6 @@
147 147  * the last line return is what will be used for MQTT
148 148  * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
149 149  
150 -
151 151  == 2.2 Downstream ==
152 152  
153 153  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
... ... @@ -154,11 +154,12 @@
154 154  
155 155  The file should use below format:
156 156  
157 -(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
158 158  
136 +dev_addr,imme/time,txt/hex,payload
137 +
159 159  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
160 160  
161 -(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
140 +dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
162 162  
163 163  * dev_addr: Inptu the device address
164 164  * imme/time:
... ... @@ -178,6 +178,7 @@
178 178  * Frequency: Transmit Frequency: example: 923300000
179 179  * rxwindow: transmit on Rx1Window or Rx2Window.
180 180  
160 +
181 181  Completely exmaple:
182 182  
183 183  * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
... ... @@ -184,7 +184,7 @@
184 184  * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
185 185  
186 186  
187 -(% style="color:#037691" %)**Downstream Frequency**
167 +Downstream Frequency
188 188  
189 189  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
190 190  
... ... @@ -198,33 +198,22 @@
198 198  * RU864: 869.1Mhz, SF12 BW125
199 199  
200 200  
201 -(% style="color:#037691" %)**Examples:**
181 +Examples:
202 202  
203 -(% class="box" %)
204 -(((
205 -we can use echo command to create files in LG308 for downstream.
206 -root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
207 -)))
183 +{{{we can use echo command to create files in LG308 for downstream.
184 +root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
208 208  
209 -(% class="box" %)
210 -(((
211 -1) From logread -f of gateway, we can see it has been added as pedning.
212 -lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
213 -lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
214 -lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
215 -)))
186 +1) From logread -f of gateway, we can see it has been added as pedning.
187 +lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
188 +lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
189 +lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
216 216  
217 -(% class="box" %)
218 -(((
219 -2) When there is an upstrea from end node, this downstream will be sent and shows:
191 +2) When there is an upstrea from end node, this downstream will be sent and shows:
220 220  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
221 221  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
222 -)))
223 223  
224 -(% class="box" %)
225 -(((
226 -3) and the end node will got:
227 -[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
195 +3) and the end node will got:
196 +[5764825]***** UpLinkCounter= 98 *****
228 228  [5764827]TX on freq 905300000 Hz at DR 0
229 229  Update Interval: 60000 ms
230 230  [5765202]txDone
... ... @@ -234,13 +234,11 @@
234 234  [5767501]rxDone
235 235  Rssi= -41
236 236  Receive data
237 -(% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
238 -)))
206 +2:12345678 --> Hex
207 +}}}
239 239  
240 -(% class="box" %)
241 -(((
242 -4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
243 -[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
209 +{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
210 +[5955877]***** UpLinkCounter= 102 *****
244 244  [5955879]TX on freq 904100000 Hz at DR 0
245 245  Update Interval: 60000 ms
246 246  [5956254]txDone
... ... @@ -250,78 +250,71 @@
250 250  [5958595]rxDone
251 251  Rssi= -37
252 252  Receive data
253 -(% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
254 -)))
220 +2:3132333435363738 --> ASCII string "12345678"
221 +}}}
255 255  
256 -
257 257  = 3. Example 1: Communicate with LT-22222-L =
258 258  
259 259  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
260 260  
261 -(% class="box" %)
262 -(((
263 -#!/bin/sh
227 +{{{#!/bin/sh
264 264  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
265 265  #
266 -# Hardware Prepare:
267 -# 1. LT-22222-L x 2, both are configured to work in
268 -#   a) Class C ;
269 -# b) ABP Mode ;
230 +# Hardware Prepare:
231 +# 1. LT-22222-L x 2, both are configured to work in
232 +# a) Class C ;
233 +# b) ABP Mode ;
270 270  # c) AT+Mod=1
271 -# 2. LPS8,
272 -#   a) Firmware version >
273 -#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
274 -#   c) Lorawan server choose built-in
275 -#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
235 +# 2. LPS8,
236 +# a) Firmware version >
237 +# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
238 +# c) Lorawan server choose built-in
239 +# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
240 +#
241 +# How it works?
242 +# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
243 +# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
244 +# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
245 +# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
246 +# ( The purpose of this step is to show that the Device2 has already do the change there).
247 +#
248 +# For example: If current status of Device1 and Device2 leds shows:
249 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
250 +# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
276 276  #
277 -# How it works?
278 -#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
279 -#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
280 -#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
281 -#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
282 -#   ( The purpose of this step is to show that the Device2 has already do the change there).
283 -#
284 -#  For example: If current status of Device1 and Device2 leds shows:
285 -#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
286 -#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
287 -#
288 -#  Step2  will cause below change:
289 -#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
290 -#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
291 -# 
292 -#  Step3 will cause below change:
293 -#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
294 -#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
295 -#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
296 -#  whether the Device 2 has been changed.
297 -)))
252 +# Step2 will cause below change:
253 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
254 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
255 +#
256 +# Step3 will cause below change:
257 +# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
258 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
259 +# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
260 +# whether the Device 2 has been changed.}}}
298 298  
299 299  ~1. Input keys
300 300  
301 -[[image:image-20220527162450-3.png]]
264 +[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
302 302  
303 303  Input Keys in LPS8
304 304  
305 -
306 306  2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
307 307  
308 308  3. Choose Built-in server
309 309  
310 -[[image:image-20220527162518-4.png]]
272 +[[image:https://wiki.dragino.com/images/thumb/d/d7/LPS8_LT-22222_2.png/600px-LPS8_LT-22222_2.png||height="264" width="600"]]
311 311  
312 312  Choose Built-in server
313 313  
314 -
315 315  4. Run the script.
316 316  
317 -[[image:image-20220527162552-5.png]]
278 +[[image:https://wiki.dragino.com/images/thumb/3/39/LPS8_LT-22222_3.png/600px-LPS8_LT-22222_3.png||height="389" width="600"]]
318 318  
319 319  Run the script
320 320  
321 -
322 322  5. Output:
323 323  
324 -[[image:image-20220527162619-6.png]]
284 +[[image:https://wiki.dragino.com/images/thumb/f/fe/LPS8_LT-22222_4.png/600px-LPS8_LT-22222_4.png||height="433" width="600"]]
325 325  
326 326  Output from LPS8
327 327  
... ... @@ -328,7 +328,7 @@
328 328  
329 329  = 4. Example 2: Communicate to TCP Server =
330 330  
331 -[[image:image-20220527162648-7.png]]
291 +[[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
332 332  
333 333  Network Structure
334 334  
... ... @@ -336,29 +336,27 @@
336 336  Full instruction video inlcude how to write scripts to fit server needed is here:
337 337  
338 338  
339 -(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
299 +Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
340 340  
341 341  
342 -(% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
302 +Note: Firmware version must be higher than lgw-5.4.1607519907
343 343  
344 344  Assume we already set up ABP keys in the gateway:
345 345  
346 -[[image:image-20220527162852-8.png]]
306 +[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
347 347  
348 348  Input Keys in LPS8
349 349  
350 -
351 351  run socket tool in PC
352 352  
353 -[[image:image-20220527163028-9.png]]
312 +[[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
354 354  
355 -
356 356  Socket tool
357 357  
358 358  
359 359  Input Server address and port
360 360  
361 -[[image:image-20220527163106-10.png]]
319 +[[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
362 362  
363 363  Input Server address and port
364 364  
... ... @@ -365,7 +365,7 @@
365 365  
366 366  See value receive in socket tool. :
367 367  
368 -[[image:image-20220527163144-11.png]]
326 +[[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
369 369  
370 370  value receive in socket tool
371 371  
image-20220527161119-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -128.8 KB
Content
image-20220527161149-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -103.9 KB
Content
image-20220527162450-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -125.4 KB
Content
image-20220527162518-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.8 KB
Content
image-20220527162552-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -33.6 KB
Content
image-20220527162619-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -41.0 KB
Content
image-20220527162648-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -151.7 KB
Content
image-20220527162852-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -125.6 KB
Content
image-20220527163028-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.9 KB
Content
image-20220527163106-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.5 KB
Content
image-20220527163144-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -107.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0