Last modified by Xiaoling on 2023/04/20 18:14
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,10 +1,12 @@ 1 - 1 +**Table of Contents:** 2 2 3 3 {{toc/}} 4 4 5 5 6 + 6 6 = 1. Introduction = 7 7 9 + 8 8 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as: 9 9 10 10 * No internet connection. ... ... @@ -20,6 +20,7 @@ 20 20 21 21 22 22 25 + 23 23 = 2. How it works = 24 24 25 25 ... ... @@ -30,13 +30,15 @@ 30 30 31 31 (% class="box infomessage" %) 32 32 ((( 33 -AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 36 +**AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 34 34 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33 35 -AT+DADDR=2602111D 38 +AT+DADDR=2602111D** 36 36 ))) 37 37 38 38 ((( 39 39 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92. 43 + 44 + 40 40 ))) 41 41 42 42 We need to input above keys in LG308 and enable ABP decryption. ... ... @@ -48,6 +48,7 @@ 48 48 49 49 == 2.1 Upstream == 50 50 56 + 51 51 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308. 52 52 53 53 ((( ... ... @@ -56,7 +56,7 @@ 56 56 57 57 [[image:image-20220527161149-2.png]] 58 58 59 -LG308 log by "logread -f" command 65 +LG308 log by "(% style="color:red" %)**logread -f**" (%%)command 60 60 61 61 62 62 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it. ... ... @@ -69,9 +69,9 @@ 69 69 000001c 70 70 ))) 71 71 72 -* RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 73 -* SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 74 -* Payload: 0xcc0c 0b63 0266 017f ff7f ff00 78 +* **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 79 +* **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 80 +* **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00 75 75 76 76 (% class="box" %) 77 77 ((( ... ... @@ -85,12 +85,13 @@ 85 85 86 86 (% class="box" %) 87 87 ((( 88 -(% style="color: #037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.94 +(% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 89 89 ))) 90 90 91 91 92 92 === 2.2.1 Decode Method === 93 93 100 + 94 94 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 95 95 96 96 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are: ... ... @@ -103,6 +103,7 @@ 103 103 000001c 104 104 ))) 105 105 113 + 106 106 If we choose ASCII decoder, the MQTT process will send out with mqtt-data: 107 107 108 108 (% class="box" %) ... ... @@ -112,6 +112,7 @@ 112 112 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00** 113 113 ))) 114 114 123 + 115 115 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data 116 116 117 117 (% class="box" %) ... ... @@ -125,8 +125,10 @@ 125 125 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI. 126 126 127 127 137 + 128 128 === 2.2.2 How to Decode My End Node === 129 129 140 + 130 130 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI 131 131 132 132 2/ Don't choose MQTT service, use LoRaWAN. ... ... @@ -148,8 +148,10 @@ 148 148 * User can use other language ,not limited to Lua, just make sure the return is what you want to send. 149 149 150 150 162 + 151 151 == 2.2 Downstream == 152 152 165 + 153 153 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used 154 154 155 155 The file should use below format: ... ... @@ -160,29 +160,32 @@ 160 160 161 161 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow** 162 162 163 -* dev_addr: Inptu the device address 164 -* imme/time: 176 +* **dev_addr:** Inptu the device address 177 +* **imme/time:** 165 165 ** imme: send downstream immediately,For Class C end node. 166 166 ** time: send downstream after receive device's uplink. For Class A end node 167 -* txt/hex: 180 +* **txt/hex:** 168 168 ** txt: send payload in ASCII 169 169 ** hex: send payload in HEX 170 -* payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement. 171 -* txpw: Transmit Power. example: 20 172 -* txbw: bandwidth: 183 +* **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement. 184 +* **txpw:** Transmit Power. example: 20 185 +* **txbw:** bandwidth: 173 173 ** 1: 500 kHz 174 174 ** 2: 250 kHz 175 175 ** 3: 125 kHz 176 176 ** 4: 62.5 kHz 177 -* SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12 178 -* Frequency: Transmit Frequency: example: 923300000 179 -* rxwindow: transmit on Rx1Window or Rx2Window. 190 +* **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12 191 +* **Frequency:** Transmit Frequency: example: 923300000 192 +* **rxwindow:** transmit on Rx1Window or Rx2Window. 180 180 181 -Completely exmaple: 182 182 183 -* Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test 184 -* New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 185 185 196 +(% style="color:blue" %)**Completely exmaple:** 197 + 198 +* **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test 199 +* **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 200 + 201 + 186 186 (% style="color:#037691" %)**Downstream Frequency** 187 187 188 188 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below: ... ... @@ -196,6 +196,7 @@ 196 196 * IN865: 866.55Mhz, SF10 BW125 197 197 * RU864: 869.1Mhz, SF12 BW125 198 198 215 + 199 199 (% style="color:#037691" %)**Examples:** 200 200 201 201 (% class="box" %) ... ... @@ -206,7 +206,7 @@ 206 206 207 207 (% class="box" %) 208 208 ((( 209 -1) From logread -f of gateway, we can see it has been added as pedning. 226 +**1)** From logread -f of gateway, we can see it has been added as pedning. 210 210 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test 211 211 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 212 212 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems). ... ... @@ -214,7 +214,7 @@ 214 214 215 215 (% class="box" %) 216 216 ((( 217 -2) When there is an upstrea from end node, this downstream will be sent and shows: 234 +**2)** When there is an upstrea from end node, this downstream will be sent and shows: 218 218 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000) 219 219 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17 220 220 ))) ... ... @@ -221,7 +221,7 @@ 221 221 222 222 (% class="box" %) 223 223 ((( 224 -3) and the end node will got: 241 +**3)** and the end node will got: 225 225 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~** 226 226 [5764827]TX on freq 905300000 Hz at DR 0 227 227 Update Interval: 60000 ms ... ... @@ -237,7 +237,7 @@ 237 237 238 238 (% class="box" %) 239 239 ((( 240 -4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 257 +**4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 241 241 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~** 242 242 [5955879]TX on freq 904100000 Hz at DR 0 243 243 Update Interval: 60000 ms ... ... @@ -254,11 +254,12 @@ 254 254 255 255 = 3. Example 1: Communicate with LT-22222-L = 256 256 274 + 257 257 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]] 258 258 259 259 (% class="box" %) 260 260 ((( 261 -#!/bin/sh 279 +//#!/bin/sh 262 262 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server 263 263 # 264 264 # Hardware Prepare: ... ... @@ -291,10 +291,10 @@ 291 291 # Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 292 292 # Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 293 293 # So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 294 -# whether the Device 2 has been changed. 312 +# whether the Device 2 has been changed.// 295 295 ))) 296 296 297 -~1. Input keys 315 +**~1. Input keys** 298 298 299 299 [[image:image-20220527162450-3.png]] 300 300 ... ... @@ -301,9 +301,9 @@ 301 301 Input Keys in LPS8 302 302 303 303 304 -2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test. 322 +**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.** 305 305 306 -3. Choose Built-in server 324 +**3. Choose Built-in server** 307 307 308 308 [[image:image-20220527162518-4.png]] 309 309 ... ... @@ -310,7 +310,7 @@ 310 310 Choose Built-in server 311 311 312 312 313 -4. Run the script. 331 +**4. Run the script.** 314 314 315 315 [[image:image-20220527162552-5.png]] 316 316 ... ... @@ -317,7 +317,7 @@ 317 317 Run the script 318 318 319 319 320 -5. Output: 338 +**5. Output:** 321 321 322 322 [[image:image-20220527162619-6.png]] 323 323 ... ... @@ -326,6 +326,7 @@ 326 326 327 327 = 4. Example 2: Communicate to TCP Server = 328 328 347 + 329 329 [[image:image-20220527162648-7.png]] 330 330 331 331 Network Structure ... ... @@ -339,6 +339,7 @@ 339 339 340 340 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907** 341 341 361 + 342 342 Assume we already set up ABP keys in the gateway: 343 343 344 344 [[image:image-20220527162852-8.png]] ... ... @@ -346,8 +346,9 @@ 346 346 Input Keys in LPS8 347 347 348 348 349 -run socket tool in PC 350 350 370 +**run socket tool in PC** 371 + 351 351 [[image:image-20220527163028-9.png]] 352 352 353 353 ... ... @@ -354,17 +354,20 @@ 354 354 Socket tool 355 355 356 356 357 -Input Server address and port 358 358 379 +**Input Server address and port** 380 + 359 359 [[image:image-20220527163106-10.png]] 360 360 361 361 Input Server address and port 362 362 363 363 364 -See value receive in socket tool. : 365 365 387 +**See value receive in socket tool:** 388 + 366 366 [[image:image-20220527163144-11.png]] 367 367 368 368 value receive in socket tool 369 369 393 + 370 370 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.