<
From version < 14.5 >
edited by Xiaoling
on 2022/06/01 11:12
To version < 1.7 >
edited by Xiaoling
on 2022/05/12 17:54
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -8,40 +8,35 @@
8 8  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9 9  
10 10  * No internet connection.
11 -* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
11 +* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
12 12  
13 13  (((
14 -The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
14 +
15 +The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
15 15  )))
16 16  
17 17  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
18 18  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
19 -1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
20 +1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
20 20  
21 21  
22 -
23 23  = 2. How it works =
24 24  
25 25  
26 -(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
26 +Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]
27 27  
28 -
29 29  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
30 30  
31 -(% class="box infomessage" %)
32 -(((
33 -AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
30 +{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
34 34  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
35 35  AT+DADDR=2602111D
36 -)))
33 +}}}
37 37  
38 -(((
39 39  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
40 -)))
41 41  
42 42  We need to input above keys in LG308 and enable ABP decryption.
43 43  
44 -[[image:image-20220527161119-1.png]]
39 +[[image:https://wiki.dragino.com/images/thumb/5/55/LG308_MQTT_1.png/600px-LG308_MQTT_1.png||height="329" width="600"]]
45 45  
46 46  Input the ABP keys in LG308
47 47  
... ... @@ -50,11 +50,9 @@
50 50  
51 51  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
52 52  
53 -(((
54 54  We can see the log of LG308 to know this packet arrive
55 -)))
56 56  
57 -[[image:image-20220527161149-2.png]]
50 +[[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
58 58  
59 59  LG308 log by "logread -f" command
60 60  
... ... @@ -61,66 +61,54 @@
61 61  
62 62  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
63 63  
64 -(% class="box" %)
65 -(((
66 -root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
67 -0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
68 -0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
57 +{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
58 +0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
59 +0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
69 69  000001c
70 -)))
61 +}}}
71 71  
72 72  * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
73 73  * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
74 74  * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
75 75  
76 -(% class="box" %)
77 -(((
78 -(% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
79 -in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
80 -root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
67 +
68 +{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
69 +in LGT92, use AT+SEND=12:hello world to send ASCII string
70 +root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
81 81  0000000 4646 4646 4646 3946 3030 3030 3030 3546
82 -0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
72 +0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
83 83  000001c
84 -)))
74 +}}}
85 85  
86 -(% class="box" %)
87 -(((
88 -(% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
89 -)))
76 +{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
77 +}}}
90 90  
91 -
92 92  === 2.2.1 Decode Method ===
93 93  
94 -The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
81 +The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
95 95  
96 96  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
97 97  
98 -(% class="box" %)
99 -(((
100 -root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
85 +{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
101 101  0000000 4646 4646 4646 4537 3030 3030 3030 3438
102 -0000010 ccd1 7fff 7fff 017f ff7f ff00         
87 +0000010 ccd1 7fff 7fff 017f ff7f ff00
103 103  000001c
104 -)))
89 +}}}
105 105  
106 106  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
107 107  
108 -(% class="box" %)
109 -(((
110 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
93 +{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
111 111  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
112 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
113 -)))
95 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
96 +}}}
114 114  
115 115  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
116 116  
117 -(% class="box" %)
118 -(((
119 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
100 +{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
120 120  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
121 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
122 -"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
123 -)))
102 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
103 +"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
104 +}}}
124 124  
125 125  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
126 126  
... ... @@ -147,7 +147,6 @@
147 147  * the last line return is what will be used for MQTT
148 148  * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
149 149  
150 -
151 151  == 2.2 Downstream ==
152 152  
153 153  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
... ... @@ -154,11 +154,12 @@
154 154  
155 155  The file should use below format:
156 156  
157 -(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
158 158  
138 +dev_addr,imme/time,txt/hex,payload
139 +
159 159  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
160 160  
161 -(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
142 +dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
162 162  
163 163  * dev_addr: Inptu the device address
164 164  * imme/time:
... ... @@ -178,13 +178,15 @@
178 178  * Frequency: Transmit Frequency: example: 923300000
179 179  * rxwindow: transmit on Rx1Window or Rx2Window.
180 180  
162 +
181 181  Completely exmaple:
182 182  
183 183  * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
184 184  * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
185 185  
186 -(% style="color:#037691" %)**Downstream Frequency**
187 187  
169 +Downstream Frequency
170 +
188 188  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
189 189  
190 190  * EU868: 869.525Mhz, DR0(SF12BW125)
... ... @@ -196,33 +196,23 @@
196 196  * IN865: 866.55Mhz, SF10 BW125
197 197  * RU864: 869.1Mhz, SF12 BW125
198 198  
199 -(% style="color:#037691" %)**Examples:**
200 200  
201 -(% class="box" %)
202 -(((
203 -we can use echo command to create files in LG308 for downstream.
204 -root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
205 -)))
183 +Examples:
206 206  
207 -(% class="box" %)
208 -(((
209 -1) From logread -f of gateway, we can see it has been added as pedning.
210 -lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
211 -lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
212 -lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
213 -)))
185 +{{{we can use echo command to create files in LG308 for downstream.
186 +root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
214 214  
215 -(% class="box" %)
216 -(((
217 -2) When there is an upstrea from end node, this downstream will be sent and shows:
188 +1) From logread -f of gateway, we can see it has been added as pedning.
189 +lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
190 +lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
191 +lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
192 +
193 +2) When there is an upstrea from end node, this downstream will be sent and shows:
218 218  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
219 219  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
220 -)))
221 221  
222 -(% class="box" %)
223 -(((
224 -3) and the end node will got:
225 -[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
197 +3) and the end node will got:
198 +[5764825]***** UpLinkCounter= 98 *****
226 226  [5764827]TX on freq 905300000 Hz at DR 0
227 227  Update Interval: 60000 ms
228 228  [5765202]txDone
... ... @@ -232,13 +232,11 @@
232 232  [5767501]rxDone
233 233  Rssi= -41
234 234  Receive data
235 -(% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
236 -)))
208 +2:12345678 --> Hex
209 +}}}
237 237  
238 -(% class="box" %)
239 -(((
240 -4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
241 -[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
211 +{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
212 +[5955877]***** UpLinkCounter= 102 *****
242 242  [5955879]TX on freq 904100000 Hz at DR 0
243 243  Update Interval: 60000 ms
244 244  [5956254]txDone
... ... @@ -248,78 +248,71 @@
248 248  [5958595]rxDone
249 249  Rssi= -37
250 250  Receive data
251 -(% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
252 -)))
222 +2:3132333435363738 --> ASCII string "12345678"
223 +}}}
253 253  
254 -
255 255  = 3. Example 1: Communicate with LT-22222-L =
256 256  
257 257  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
258 258  
259 -(% class="box" %)
260 -(((
261 -#!/bin/sh
229 +{{{#!/bin/sh
262 262  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
263 263  #
264 -# Hardware Prepare:
265 -# 1. LT-22222-L x 2, both are configured to work in
266 -#   a) Class C ;
267 -# b) ABP Mode ;
232 +# Hardware Prepare:
233 +# 1. LT-22222-L x 2, both are configured to work in
234 +# a) Class C ;
235 +# b) ABP Mode ;
268 268  # c) AT+Mod=1
269 -# 2. LPS8,
270 -#   a) Firmware version >
271 -#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
272 -#   c) Lorawan server choose built-in
273 -#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
237 +# 2. LPS8,
238 +# a) Firmware version >
239 +# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
240 +# c) Lorawan server choose built-in
241 +# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
242 +#
243 +# How it works?
244 +# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
245 +# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
246 +# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
247 +# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
248 +# ( The purpose of this step is to show that the Device2 has already do the change there).
249 +#
250 +# For example: If current status of Device1 and Device2 leds shows:
251 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
252 +# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
274 274  #
275 -# How it works?
276 -#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
277 -#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
278 -#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
279 -#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
280 -#   ( The purpose of this step is to show that the Device2 has already do the change there).
281 -#
282 -#  For example: If current status of Device1 and Device2 leds shows:
283 -#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
284 -#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
285 -#
286 -#  Step2  will cause below change:
287 -#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
288 -#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
289 -# 
290 -#  Step3 will cause below change:
291 -#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
292 -#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
293 -#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
294 -#  whether the Device 2 has been changed.
295 -)))
254 +# Step2 will cause below change:
255 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
256 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
257 +#
258 +# Step3 will cause below change:
259 +# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
260 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
261 +# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
262 +# whether the Device 2 has been changed.}}}
296 296  
297 297  ~1. Input keys
298 298  
299 -[[image:image-20220527162450-3.png]]
266 +[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
300 300  
301 301  Input Keys in LPS8
302 302  
303 -
304 304  2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
305 305  
306 306  3. Choose Built-in server
307 307  
308 -[[image:image-20220527162518-4.png]]
274 +[[image:https://wiki.dragino.com/images/thumb/d/d7/LPS8_LT-22222_2.png/600px-LPS8_LT-22222_2.png||height="264" width="600"]]
309 309  
310 310  Choose Built-in server
311 311  
312 -
313 313  4. Run the script.
314 314  
315 -[[image:image-20220527162552-5.png]]
280 +[[image:https://wiki.dragino.com/images/thumb/3/39/LPS8_LT-22222_3.png/600px-LPS8_LT-22222_3.png||height="389" width="600"]]
316 316  
317 317  Run the script
318 318  
319 -
320 320  5. Output:
321 321  
322 -[[image:image-20220527162619-6.png]]
286 +[[image:https://wiki.dragino.com/images/thumb/f/fe/LPS8_LT-22222_4.png/600px-LPS8_LT-22222_4.png||height="433" width="600"]]
323 323  
324 324  Output from LPS8
325 325  
... ... @@ -326,7 +326,7 @@
326 326  
327 327  = 4. Example 2: Communicate to TCP Server =
328 328  
329 -[[image:image-20220527162648-7.png]]
293 +[[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
330 330  
331 331  Network Structure
332 332  
... ... @@ -334,29 +334,27 @@
334 334  Full instruction video inlcude how to write scripts to fit server needed is here:
335 335  
336 336  
337 -(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
301 +Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
338 338  
339 339  
340 -(% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
304 +Note: Firmware version must be higher than lgw-5.4.1607519907
341 341  
342 342  Assume we already set up ABP keys in the gateway:
343 343  
344 -[[image:image-20220527162852-8.png]]
308 +[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
345 345  
346 346  Input Keys in LPS8
347 347  
348 -
349 349  run socket tool in PC
350 350  
351 -[[image:image-20220527163028-9.png]]
314 +[[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
352 352  
353 -
354 354  Socket tool
355 355  
356 356  
357 357  Input Server address and port
358 358  
359 -[[image:image-20220527163106-10.png]]
321 +[[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
360 360  
361 361  Input Server address and port
362 362  
... ... @@ -363,7 +363,7 @@
363 363  
364 364  See value receive in socket tool. :
365 365  
366 -[[image:image-20220527163144-11.png]]
328 +[[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
367 367  
368 368  value receive in socket tool
369 369  
image-20220527161119-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -128.8 KB
Content
image-20220527161149-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -103.9 KB
Content
image-20220527162450-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -125.4 KB
Content
image-20220527162518-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.8 KB
Content
image-20220527162552-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -33.6 KB
Content
image-20220527162619-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -41.0 KB
Content
image-20220527162648-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -151.7 KB
Content
image-20220527162852-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -125.6 KB
Content
image-20220527163028-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.9 KB
Content
image-20220527163106-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.5 KB
Content
image-20220527163144-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -107.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0