<
From version < 14.4 >
edited by Xiaoling
on 2022/05/31 10:09
To version < 14.8 >
edited by Xiaoling
on 2022/07/22 11:32
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,10 +1,13 @@
1 - **Contents:**
1 +*
2 +** Table of** **Contents:
2 2  
3 3  {{toc/}}
4 4  
5 5  
7 +
6 6  = 1. Introduction =
7 7  
10 +
8 8  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9 9  
10 10  * No internet connection.
... ... @@ -28,13 +28,15 @@
28 28  
29 29  (% class="box infomessage" %)
30 30  (((
31 -AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
34 +**AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
32 32  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
33 -AT+DADDR=2602111D
36 +AT+DADDR=2602111D**
34 34  )))
35 35  
36 36  (((
37 37  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
41 +
42 +
38 38  )))
39 39  
40 40  We need to input above keys in LG308 and enable ABP decryption.
... ... @@ -46,6 +46,7 @@
46 46  
47 47  == 2.1 Upstream ==
48 48  
54 +
49 49  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
50 50  
51 51  (((
... ... @@ -54,7 +54,7 @@
54 54  
55 55  [[image:image-20220527161149-2.png]]
56 56  
57 -LG308 log by "logread -f" command
63 +LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
58 58  
59 59  
60 60  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
... ... @@ -67,9 +67,9 @@
67 67  000001c
68 68  )))
69 69  
70 -* RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
71 -* SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
72 -* Payload: 0xcc0c 0b63 0266 017f ff7f ff00
76 +* **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
77 +* **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
78 +* **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
73 73  
74 74  (% class="box" %)
75 75  (((
... ... @@ -83,12 +83,13 @@
83 83  
84 84  (% class="box" %)
85 85  (((
86 -(% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
92 +(% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
87 87  )))
88 88  
89 89  
90 90  === 2.2.1 Decode Method ===
91 91  
98 +
92 92  The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
93 93  
94 94  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
... ... @@ -101,6 +101,7 @@
101 101  000001c
102 102  )))
103 103  
111 +
104 104  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
105 105  
106 106  (% class="box" %)
... ... @@ -110,6 +110,7 @@
110 110  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
111 111  )))
112 112  
121 +
113 113  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
114 114  
115 115  (% class="box" %)
... ... @@ -125,6 +125,7 @@
125 125  
126 126  === 2.2.2 How to Decode My End Node ===
127 127  
137 +
128 128  1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
129 129  
130 130  2/ Don't choose MQTT service, use LoRaWAN.
... ... @@ -149,6 +149,7 @@
149 149  
150 150  == 2.2 Downstream ==
151 151  
162 +
152 152  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
153 153  
154 154  The file should use below format:
... ... @@ -159,29 +159,32 @@
159 159  
160 160  (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
161 161  
162 -* dev_addr: Inptu the device address
163 -* imme/time:
173 +* **dev_addr:** Inptu the device address
174 +* **imme/time:**
164 164  ** imme: send downstream immediately,For Class C end node.
165 165  ** time: send downstream after receive device's uplink. For Class A end node
166 -* txt/hex:
177 +* **txt/hex:**
167 167  ** txt: send payload in ASCII
168 168  ** hex: send payload in HEX
169 -* payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
170 -* txpw: Transmit Power. example: 20
171 -* txbw: bandwidth:
180 +* **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
181 +* **txpw:** Transmit Power. example: 20
182 +* **txbw:** bandwidth:
172 172  ** 1: 500 kHz
173 173  ** 2: 250 kHz
174 174  ** 3: 125 kHz
175 175  ** 4: 62.5 kHz
176 -* SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
177 -* Frequency: Transmit Frequency: example: 923300000
178 -* rxwindow: transmit on Rx1Window or Rx2Window.
187 +* **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
188 +* **Frequency:** Transmit Frequency: example: 923300000
189 +* **rxwindow:** transmit on Rx1Window or Rx2Window.
179 179  
180 -Completely exmaple:
181 181  
182 -* Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
183 -* New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
192 +(% style="color:blue" %)**Completely exmaple:**
184 184  
194 +* **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
195 +* **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
196 +
197 +
198 +
185 185  (% style="color:#037691" %)**Downstream Frequency**
186 186  
187 187  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
... ... @@ -195,6 +195,8 @@
195 195  * IN865: 866.55Mhz, SF10 BW125
196 196  * RU864: 869.1Mhz, SF12 BW125
197 197  
212 +
213 +
198 198  (% style="color:#037691" %)**Examples:**
199 199  
200 200  (% class="box" %)
... ... @@ -205,7 +205,7 @@
205 205  
206 206  (% class="box" %)
207 207  (((
208 -1) From logread -f of gateway, we can see it has been added as pedning.
224 +**1)** From logread -f of gateway, we can see it has been added as pedning.
209 209  lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
210 210  lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
211 211  lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
... ... @@ -213,7 +213,7 @@
213 213  
214 214  (% class="box" %)
215 215  (((
216 -2) When there is an upstrea from end node, this downstream will be sent and shows:
232 +**2)** When there is an upstrea from end node, this downstream will be sent and shows:
217 217  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
218 218  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
219 219  )))
... ... @@ -220,7 +220,7 @@
220 220  
221 221  (% class="box" %)
222 222  (((
223 -3) and the end node will got:
239 +**3)** and the end node will got:
224 224  [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
225 225  [5764827]TX on freq 905300000 Hz at DR 0
226 226  Update Interval: 60000 ms
... ... @@ -236,7 +236,7 @@
236 236  
237 237  (% class="box" %)
238 238  (((
239 -4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
255 +**4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
240 240  [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
241 241  [5955879]TX on freq 904100000 Hz at DR 0
242 242  Update Interval: 60000 ms
... ... @@ -253,11 +253,12 @@
253 253  
254 254  = 3. Example 1: Communicate with LT-22222-L =
255 255  
272 +
256 256  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
257 257  
258 258  (% class="box" %)
259 259  (((
260 -#!/bin/sh
277 +//#!/bin/sh
261 261  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
262 262  #
263 263  # Hardware Prepare:
... ... @@ -290,10 +290,10 @@
290 290  #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
291 291  #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
292 292  #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
293 -#  whether the Device 2 has been changed.
310 +#  whether the Device 2 has been changed.//
294 294  )))
295 295  
296 -~1. Input keys
313 +**~1. Input keys**
297 297  
298 298  [[image:image-20220527162450-3.png]]
299 299  
... ... @@ -300,9 +300,9 @@
300 300  Input Keys in LPS8
301 301  
302 302  
303 -2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
320 +**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
304 304  
305 -3. Choose Built-in server
322 +**3. Choose Built-in server**
306 306  
307 307  [[image:image-20220527162518-4.png]]
308 308  
... ... @@ -309,7 +309,7 @@
309 309  Choose Built-in server
310 310  
311 311  
312 -4. Run the script.
329 +**4. Run the script.**
313 313  
314 314  [[image:image-20220527162552-5.png]]
315 315  
... ... @@ -316,7 +316,7 @@
316 316  Run the script
317 317  
318 318  
319 -5. Output:
336 +**5. Output:**
320 320  
321 321  [[image:image-20220527162619-6.png]]
322 322  
... ... @@ -325,6 +325,7 @@
325 325  
326 326  = 4. Example 2: Communicate to TCP Server =
327 327  
345 +
328 328  [[image:image-20220527162648-7.png]]
329 329  
330 330  Network Structure
... ... @@ -338,6 +338,7 @@
338 338  
339 339  (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
340 340  
359 +
341 341  Assume we already set up ABP keys in the gateway:
342 342  
343 343  [[image:image-20220527162852-8.png]]
... ... @@ -345,8 +345,9 @@
345 345  Input Keys in LPS8
346 346  
347 347  
348 -run socket tool in PC
349 349  
368 +**run socket tool in PC**
369 +
350 350  [[image:image-20220527163028-9.png]]
351 351  
352 352  
... ... @@ -353,17 +353,20 @@
353 353  Socket tool
354 354  
355 355  
356 -Input Server address and port
357 357  
377 +**Input Server address and port**
378 +
358 358  [[image:image-20220527163106-10.png]]
359 359  
360 360  Input Server address and port
361 361  
362 362  
363 -See value receive in socket tool. :
364 364  
385 +**See value receive in socket tool:**
386 +
365 365  [[image:image-20220527163144-11.png]]
366 366  
367 367  value receive in socket tool
368 368  
391 +
369 369  If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0