Last modified by Xiaoling on 2023/04/20 18:14
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,14 +1,17 @@ 1 - **Contents:** 1 +* 2 +** Table of** **Contents: 2 2 3 3 {{toc/}} 4 4 5 5 7 + 6 6 = 1. Introduction = 7 7 10 + 8 8 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as: 9 9 10 10 * No internet connection. 11 -* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>> url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).14 +* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]). 12 12 13 13 ((( 14 14 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements: ... ... @@ -28,13 +28,15 @@ 28 28 29 29 (% class="box infomessage" %) 30 30 ((( 31 -AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 34 +**AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 32 32 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33 33 -AT+DADDR=2602111D 36 +AT+DADDR=2602111D** 34 34 ))) 35 35 36 36 ((( 37 37 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92. 41 + 42 + 38 38 ))) 39 39 40 40 We need to input above keys in LG308 and enable ABP decryption. ... ... @@ -46,6 +46,7 @@ 46 46 47 47 == 2.1 Upstream == 48 48 54 + 49 49 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308. 50 50 51 51 ((( ... ... @@ -54,7 +54,7 @@ 54 54 55 55 [[image:image-20220527161149-2.png]] 56 56 57 -LG308 log by "logread -f" command 63 +LG308 log by "(% style="color:red" %)**logread -f**" (%%)command 58 58 59 59 60 60 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it. ... ... @@ -67,9 +67,9 @@ 67 67 000001c 68 68 ))) 69 69 70 -* RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 71 -* SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 72 -* Payload: 0xcc0c 0b63 0266 017f ff7f ff00 76 +* **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 77 +* **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 78 +* **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00 73 73 74 74 (% class="box" %) 75 75 ((( ... ... @@ -83,12 +83,13 @@ 83 83 84 84 (% class="box" %) 85 85 ((( 86 -(% style="color: #037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.92 +(% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 87 87 ))) 88 88 89 89 90 90 === 2.2.1 Decode Method === 91 91 98 + 92 92 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 93 93 94 94 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are: ... ... @@ -101,6 +101,7 @@ 101 101 000001c 102 102 ))) 103 103 111 + 104 104 If we choose ASCII decoder, the MQTT process will send out with mqtt-data: 105 105 106 106 (% class="box" %) ... ... @@ -110,6 +110,7 @@ 110 110 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00** 111 111 ))) 112 112 121 + 113 113 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data 114 114 115 115 (% class="box" %) ... ... @@ -125,6 +125,7 @@ 125 125 126 126 === 2.2.2 How to Decode My End Node === 127 127 137 + 128 128 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI 129 129 130 130 2/ Don't choose MQTT service, use LoRaWAN. ... ... @@ -146,8 +146,10 @@ 146 146 * User can use other language ,not limited to Lua, just make sure the return is what you want to send. 147 147 148 148 159 + 149 149 == 2.2 Downstream == 150 150 162 + 151 151 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used 152 152 153 153 The file should use below format: ... ... @@ -158,29 +158,32 @@ 158 158 159 159 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow** 160 160 161 -* dev_addr: Inptu the device address 162 -* imme/time: 173 +* **dev_addr:** Inptu the device address 174 +* **imme/time:** 163 163 ** imme: send downstream immediately,For Class C end node. 164 164 ** time: send downstream after receive device's uplink. For Class A end node 165 -* txt/hex: 177 +* **txt/hex:** 166 166 ** txt: send payload in ASCII 167 167 ** hex: send payload in HEX 168 -* payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement. 169 -* txpw: Transmit Power. example: 20 170 -* txbw: bandwidth: 180 +* **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement. 181 +* **txpw:** Transmit Power. example: 20 182 +* **txbw:** bandwidth: 171 171 ** 1: 500 kHz 172 172 ** 2: 250 kHz 173 173 ** 3: 125 kHz 174 174 ** 4: 62.5 kHz 175 -* SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12 176 -* Frequency: Transmit Frequency: example: 923300000 177 -* rxwindow: transmit on Rx1Window or Rx2Window. 187 +* **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12 188 +* **Frequency:** Transmit Frequency: example: 923300000 189 +* **rxwindow:** transmit on Rx1Window or Rx2Window. 178 178 179 -Completely exmaple: 180 180 181 -* Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test 182 -* New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 192 +(% style="color:blue" %)**Completely exmaple:** 183 183 194 +* **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test 195 +* **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 196 + 197 + 198 + 184 184 (% style="color:#037691" %)**Downstream Frequency** 185 185 186 186 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below: ... ... @@ -194,6 +194,8 @@ 194 194 * IN865: 866.55Mhz, SF10 BW125 195 195 * RU864: 869.1Mhz, SF12 BW125 196 196 212 + 213 + 197 197 (% style="color:#037691" %)**Examples:** 198 198 199 199 (% class="box" %) ... ... @@ -204,7 +204,7 @@ 204 204 205 205 (% class="box" %) 206 206 ((( 207 -1) From logread -f of gateway, we can see it has been added as pedning. 224 +**1)** From logread -f of gateway, we can see it has been added as pedning. 208 208 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test 209 209 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 210 210 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems). ... ... @@ -212,7 +212,7 @@ 212 212 213 213 (% class="box" %) 214 214 ((( 215 -2) When there is an upstrea from end node, this downstream will be sent and shows: 232 +**2)** When there is an upstrea from end node, this downstream will be sent and shows: 216 216 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000) 217 217 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17 218 218 ))) ... ... @@ -219,7 +219,7 @@ 219 219 220 220 (% class="box" %) 221 221 ((( 222 -3) and the end node will got: 239 +**3)** and the end node will got: 223 223 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~** 224 224 [5764827]TX on freq 905300000 Hz at DR 0 225 225 Update Interval: 60000 ms ... ... @@ -235,7 +235,7 @@ 235 235 236 236 (% class="box" %) 237 237 ((( 238 -4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 255 +**4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 239 239 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~** 240 240 [5955879]TX on freq 904100000 Hz at DR 0 241 241 Update Interval: 60000 ms ... ... @@ -252,11 +252,12 @@ 252 252 253 253 = 3. Example 1: Communicate with LT-22222-L = 254 254 272 + 255 255 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]] 256 256 257 257 (% class="box" %) 258 258 ((( 259 -#!/bin/sh 277 +//#!/bin/sh 260 260 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server 261 261 # 262 262 # Hardware Prepare: ... ... @@ -289,10 +289,10 @@ 289 289 # Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 290 290 # Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 291 291 # So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 292 -# whether the Device 2 has been changed. 310 +# whether the Device 2 has been changed.// 293 293 ))) 294 294 295 -~1. Input keys 313 +**~1. Input keys** 296 296 297 297 [[image:image-20220527162450-3.png]] 298 298 ... ... @@ -299,9 +299,9 @@ 299 299 Input Keys in LPS8 300 300 301 301 302 -2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test. 320 +**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.** 303 303 304 -3. Choose Built-in server 322 +**3. Choose Built-in server** 305 305 306 306 [[image:image-20220527162518-4.png]] 307 307 ... ... @@ -308,7 +308,7 @@ 308 308 Choose Built-in server 309 309 310 310 311 -4. Run the script. 329 +**4. Run the script.** 312 312 313 313 [[image:image-20220527162552-5.png]] 314 314 ... ... @@ -315,7 +315,7 @@ 315 315 Run the script 316 316 317 317 318 -5. Output: 336 +**5. Output:** 319 319 320 320 [[image:image-20220527162619-6.png]] 321 321 ... ... @@ -324,6 +324,7 @@ 324 324 325 325 = 4. Example 2: Communicate to TCP Server = 326 326 345 + 327 327 [[image:image-20220527162648-7.png]] 328 328 329 329 Network Structure ... ... @@ -337,6 +337,7 @@ 337 337 338 338 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907** 339 339 359 + 340 340 Assume we already set up ABP keys in the gateway: 341 341 342 342 [[image:image-20220527162852-8.png]] ... ... @@ -344,8 +344,9 @@ 344 344 Input Keys in LPS8 345 345 346 346 347 -run socket tool in PC 348 348 368 +**run socket tool in PC** 369 + 349 349 [[image:image-20220527163028-9.png]] 350 350 351 351 ... ... @@ -352,17 +352,20 @@ 352 352 Socket tool 353 353 354 354 355 -Input Server address and port 356 356 377 +**Input Server address and port** 378 + 357 357 [[image:image-20220527163106-10.png]] 358 358 359 359 Input Server address and port 360 360 361 361 362 -See value receive in socket tool. : 363 363 385 +**See value receive in socket tool:** 386 + 364 364 [[image:image-20220527163144-11.png]] 365 365 366 366 value receive in socket tool 367 367 391 + 368 368 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.