<
From version < 1.7 >
edited by Xiaoling
on 2022/05/12 17:54
To version < 14.7 >
edited by Xiaoling
on 2022/06/01 11:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -8,35 +8,40 @@
8 8  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9 9  
10 10  * No internet connection.
11 -* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
11 +* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
12 12  
13 13  (((
14 -
15 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
14 +The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
16 16  )))
17 17  
18 18  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
19 19  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
20 -1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
19 +1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
21 21  
22 22  
22 +
23 23  = 2. How it works =
24 24  
25 25  
26 -Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]
26 +(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
27 27  
28 +
28 28  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
29 29  
30 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
31 +(% class="box infomessage" %)
32 +(((
33 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
31 31  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
32 32  AT+DADDR=2602111D
33 -}}}
36 +)))
34 34  
38 +(((
35 35  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
40 +)))
36 36  
37 37  We need to input above keys in LG308 and enable ABP decryption.
38 38  
39 -[[image:https://wiki.dragino.com/images/thumb/5/55/LG308_MQTT_1.png/600px-LG308_MQTT_1.png||height="329" width="600"]]
44 +[[image:image-20220527161119-1.png]]
40 40  
41 41  Input the ABP keys in LG308
42 42  
... ... @@ -45,9 +45,11 @@
45 45  
46 46  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
47 47  
53 +(((
48 48  We can see the log of LG308 to know this packet arrive
55 +)))
49 49  
50 -[[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
57 +[[image:image-20220527161149-2.png]]
51 51  
52 52  LG308 log by "logread -f" command
53 53  
... ... @@ -54,54 +54,66 @@
54 54  
55 55  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
56 56  
57 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
58 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
59 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
64 +(% class="box" %)
65 +(((
66 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
67 +0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
68 +0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
60 60  000001c
61 -}}}
70 +)))
62 62  
63 63  * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
64 64  * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
65 65  * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
66 66  
67 -
68 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
69 -in LGT92, use AT+SEND=12:hello world to send ASCII string
70 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
76 +(% class="box" %)
77 +(((
78 +(% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
79 +in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
80 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
71 71  0000000 4646 4646 4646 3946 3030 3030 3030 3546
72 -0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
82 +0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
73 73  000001c
74 -}}}
84 +)))
75 75  
76 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
77 -}}}
86 +(% class="box" %)
87 +(((
88 +(% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
89 +)))
78 78  
91 +
79 79  === 2.2.1 Decode Method ===
80 80  
81 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
94 +The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
82 82  
83 83  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
84 84  
85 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
98 +(% class="box" %)
99 +(((
100 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
86 86  0000000 4646 4646 4646 4537 3030 3030 3030 3438
87 -0000010 ccd1 7fff 7fff 017f ff7f ff00
102 +0000010 ccd1 7fff 7fff 017f ff7f ff00         
88 88  000001c
89 -}}}
104 +)))
90 90  
91 91  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
92 92  
93 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
108 +(% class="box" %)
109 +(((
110 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
94 94  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
95 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
96 -}}}
112 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
113 +)))
97 97  
98 98  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
99 99  
100 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
117 +(% class="box" %)
118 +(((
119 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
101 101  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
102 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
103 -"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
104 -}}}
121 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
122 +"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
123 +)))
105 105  
106 106  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
107 107  
... ... @@ -128,6 +128,7 @@
128 128  * the last line return is what will be used for MQTT
129 129  * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
130 130  
150 +
131 131  == 2.2 Downstream ==
132 132  
133 133  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
... ... @@ -134,12 +134,11 @@
134 134  
135 135  The file should use below format:
136 136  
157 +(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
137 137  
138 -dev_addr,imme/time,txt/hex,payload
139 -
140 140  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
141 141  
142 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
161 +(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
143 143  
144 144  * dev_addr: Inptu the device address
145 145  * imme/time:
... ... @@ -159,7 +159,6 @@
159 159  * Frequency: Transmit Frequency: example: 923300000
160 160  * rxwindow: transmit on Rx1Window or Rx2Window.
161 161  
162 -
163 163  Completely exmaple:
164 164  
165 165  * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
... ... @@ -166,7 +166,7 @@
166 166  * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
167 167  
168 168  
169 -Downstream Frequency
187 +(% style="color:#037691" %)**Downstream Frequency**
170 170  
171 171  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
172 172  
... ... @@ -180,22 +180,33 @@
180 180  * RU864: 869.1Mhz, SF12 BW125
181 181  
182 182  
183 -Examples:
201 +(% style="color:#037691" %)**Examples:**
184 184  
185 -{{{we can use echo command to create files in LG308 for downstream.
186 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
203 +(% class="box" %)
204 +(((
205 +we can use echo command to create files in LG308 for downstream.
206 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
207 +)))
187 187  
188 -1) From logread -f of gateway, we can see it has been added as pedning.
189 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
190 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
191 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
209 +(% class="box" %)
210 +(((
211 +1) From logread -f of gateway, we can see it has been added as pedning.
212 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
213 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
214 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
215 +)))
192 192  
193 -2) When there is an upstrea from end node, this downstream will be sent and shows:
217 +(% class="box" %)
218 +(((
219 +2) When there is an upstrea from end node, this downstream will be sent and shows:
194 194  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
195 195  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
222 +)))
196 196  
197 -3) and the end node will got:
198 -[5764825]***** UpLinkCounter= 98 *****
224 +(% class="box" %)
225 +(((
226 +3) and the end node will got:
227 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
199 199  [5764827]TX on freq 905300000 Hz at DR 0
200 200  Update Interval: 60000 ms
201 201  [5765202]txDone
... ... @@ -205,11 +205,13 @@
205 205  [5767501]rxDone
206 206  Rssi= -41
207 207  Receive data
208 -2:12345678 --> Hex
209 -}}}
237 +(% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
238 +)))
210 210  
211 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
212 -[5955877]***** UpLinkCounter= 102 *****
240 +(% class="box" %)
241 +(((
242 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
243 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
213 213  [5955879]TX on freq 904100000 Hz at DR 0
214 214  Update Interval: 60000 ms
215 215  [5956254]txDone
... ... @@ -219,71 +219,78 @@
219 219  [5958595]rxDone
220 220  Rssi= -37
221 221  Receive data
222 -2:3132333435363738 --> ASCII string "12345678"
223 -}}}
253 +(% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
254 +)))
224 224  
256 +
225 225  = 3. Example 1: Communicate with LT-22222-L =
226 226  
227 227  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
228 228  
229 -{{{#!/bin/sh
261 +(% class="box" %)
262 +(((
263 +#!/bin/sh
230 230  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
231 231  #
232 -# Hardware Prepare:
233 -# 1. LT-22222-L x 2, both are configured to work in
234 -# a) Class C ;
235 -# b) ABP Mode ;
266 +# Hardware Prepare:
267 +# 1. LT-22222-L x 2, both are configured to work in
268 +#   a) Class C ;
269 +# b) ABP Mode ;
236 236  # c) AT+Mod=1
237 -# 2. LPS8,
238 -# a) Firmware version >
239 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
240 -# c) Lorawan server choose built-in
241 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
242 -#
243 -# How it works?
244 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
245 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
246 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
247 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
248 -# ( The purpose of this step is to show that the Device2 has already do the change there).
249 -#
250 -# For example: If current status of Device1 and Device2 leds shows:
251 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
252 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
271 +# 2. LPS8,
272 +#   a) Firmware version >
273 +#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
274 +#   c) Lorawan server choose built-in
275 +#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
253 253  #
254 -# Step2 will cause below change:
255 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
256 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
257 -#
258 -# Step3 will cause below change:
259 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
260 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
261 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
262 -# whether the Device 2 has been changed.}}}
277 +# How it works?
278 +#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
279 +#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
280 +#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
281 +#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
282 +#   ( The purpose of this step is to show that the Device2 has already do the change there).
283 +#
284 +#  For example: If current status of Device1 and Device2 leds shows:
285 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
286 +#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
287 +#
288 +#  Step2  will cause below change:
289 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
290 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
291 +# 
292 +#  Step3 will cause below change:
293 +#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
294 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
295 +#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
296 +#  whether the Device 2 has been changed.
297 +)))
263 263  
264 264  ~1. Input keys
265 265  
266 -[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
301 +[[image:image-20220527162450-3.png]]
267 267  
268 268  Input Keys in LPS8
269 269  
305 +
270 270  2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
271 271  
272 272  3. Choose Built-in server
273 273  
274 -[[image:https://wiki.dragino.com/images/thumb/d/d7/LPS8_LT-22222_2.png/600px-LPS8_LT-22222_2.png||height="264" width="600"]]
310 +[[image:image-20220527162518-4.png]]
275 275  
276 276  Choose Built-in server
277 277  
314 +
278 278  4. Run the script.
279 279  
280 -[[image:https://wiki.dragino.com/images/thumb/3/39/LPS8_LT-22222_3.png/600px-LPS8_LT-22222_3.png||height="389" width="600"]]
317 +[[image:image-20220527162552-5.png]]
281 281  
282 282  Run the script
283 283  
321 +
284 284  5. Output:
285 285  
286 -[[image:https://wiki.dragino.com/images/thumb/f/fe/LPS8_LT-22222_4.png/600px-LPS8_LT-22222_4.png||height="433" width="600"]]
324 +[[image:image-20220527162619-6.png]]
287 287  
288 288  Output from LPS8
289 289  
... ... @@ -290,7 +290,7 @@
290 290  
291 291  = 4. Example 2: Communicate to TCP Server =
292 292  
293 -[[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
331 +[[image:image-20220527162648-7.png]]
294 294  
295 295  Network Structure
296 296  
... ... @@ -298,27 +298,29 @@
298 298  Full instruction video inlcude how to write scripts to fit server needed is here:
299 299  
300 300  
301 -Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
339 +(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
302 302  
303 303  
304 -Note: Firmware version must be higher than lgw-5.4.1607519907
342 +(% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
305 305  
306 306  Assume we already set up ABP keys in the gateway:
307 307  
308 -[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
346 +[[image:image-20220527162852-8.png]]
309 309  
310 310  Input Keys in LPS8
311 311  
350 +
312 312  run socket tool in PC
313 313  
314 -[[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
353 +[[image:image-20220527163028-9.png]]
315 315  
355 +
316 316  Socket tool
317 317  
318 318  
319 319  Input Server address and port
320 320  
321 -[[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
361 +[[image:image-20220527163106-10.png]]
322 322  
323 323  Input Server address and port
324 324  
... ... @@ -325,7 +325,7 @@
325 325  
326 326  See value receive in socket tool. :
327 327  
328 -[[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
368 +[[image:image-20220527163144-11.png]]
329 329  
330 330  value receive in socket tool
331 331  
image-20220527161119-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +128.8 KB
Content
image-20220527161149-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +103.9 KB
Content
image-20220527162450-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +125.4 KB
Content
image-20220527162518-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.8 KB
Content
image-20220527162552-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +33.6 KB
Content
image-20220527162619-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +41.0 KB
Content
image-20220527162648-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +151.7 KB
Content
image-20220527162852-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +125.6 KB
Content
image-20220527163028-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.9 KB
Content
image-20220527163106-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.5 KB
Content
image-20220527163144-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0