Last modified by Xiaoling on 2023/04/20 18:14
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -10,27 +10,31 @@ 10 10 * No internet connection. 11 11 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]). 12 12 13 +((( 14 +The basic of this feature is the decoding of **LoRaWAN ABP End Node**. Requirements: 15 +))) 13 13 14 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements: 15 - 16 16 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode 17 17 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]] 18 18 1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]] 19 19 20 - 21 21 = 2. How it works = 22 22 23 23 24 -Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]] 24 +**Video Instruction**: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]] 25 25 26 26 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys: 27 27 28 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 28 +(% class="box infomessage" %) 29 +((( 30 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 29 29 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33 30 30 AT+DADDR=2602111D 31 - }}}33 +))) 32 32 35 +((( 33 33 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92. 37 +))) 34 34 35 35 We need to input above keys in LG308 and enable ABP decryption. 36 36 ... ... @@ -43,7 +43,9 @@ 43 43 44 44 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308. 45 45 50 +((( 46 46 We can see the log of LG308 to know this packet arrive 52 +))) 47 47 48 48 [[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]] 49 49 ... ... @@ -52,54 +52,65 @@ 52 52 53 53 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it. 54 54 55 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D 56 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR 57 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload 61 +(% class="box" %) 62 +((( 63 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D 64 +0000000 (% class="mark" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%) ~-~-> Got RSSI and SNR 65 +0000010 (% class="mark" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload 58 58 000001c 59 - }}}67 +))) 60 60 61 61 * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 62 62 * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 63 63 * Payload: 0xcc0c 0b63 0266 017f ff7f ff00 64 64 65 - 66 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below: 67 -in LGT92, use AT+SEND=12:hello world to send ASCII string 68 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D 73 +(% class="box" %) 74 +((( 75 +(% class="mark" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below: 76 +in LGT92, use **AT+SEND=12**:hello world to send ASCII string 77 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D 69 69 0000000 4646 4646 4646 3946 3030 3030 3030 3546 70 -0000010 6865 6c6c 6f20 776f 726c 6400 79 +0000010 6865 6c6c 6f20 776f 726c 6400 ~-~-> Got ASCII code "hello world" 71 71 000001c 72 - }}}81 +))) 73 73 74 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 75 -}}} 83 +(% class="box" %) 84 +((( 85 +(% class="mark" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 86 +))) 76 76 77 77 === 2.2.1 Decode Method === 78 78 79 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 90 +The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 80 80 81 81 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are: 82 82 83 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108 94 +(% class="box" %) 95 +((( 96 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108 84 84 0000000 4646 4646 4646 4537 3030 3030 3030 3438 85 -0000010 ccd1 7fff 7fff 017f ff7f ff00 98 +0000010 ccd1 7fff 7fff 017f ff7f ff00 86 86 000001c 87 - }}}100 +))) 88 88 89 89 If we choose ASCII decoder, the MQTT process will send out with mqtt-data: 90 90 91 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 104 +(% class="box" %) 105 +((( 106 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 92 92 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII 93 93 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00 94 - }}}109 +))) 95 95 96 96 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data 97 97 98 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 113 +(% class="box" %) 114 +((( 115 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 99 99 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65 100 100 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9, 101 101 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0} 102 - }}}119 +))) 103 103 104 104 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI. 105 105 ... ... @@ -132,12 +132,11 @@ 132 132 133 133 The file should use below format: 134 134 152 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload** 135 135 136 -dev_addr,imme/time,txt/hex,payload 137 - 138 138 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option 139 139 140 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow 156 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow** 141 141 142 142 * dev_addr: Inptu the device address 143 143 * imme/time: ... ... @@ -157,15 +157,13 @@ 157 157 * Frequency: Transmit Frequency: example: 923300000 158 158 * rxwindow: transmit on Rx1Window or Rx2Window. 159 159 160 - 161 161 Completely exmaple: 162 162 163 163 * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test 164 164 * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 165 165 181 +(% class="mark" %)**Downstream Frequency** 166 166 167 -Downstream Frequency 168 - 169 169 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below: 170 170 171 171 * EU868: 869.525Mhz, DR0(SF12BW125) ... ... @@ -177,23 +177,33 @@ 177 177 * IN865: 866.55Mhz, SF10 BW125 178 178 * RU864: 869.1Mhz, SF12 BW125 179 179 194 +(% class="mark" %)**Examples:** 180 180 181 -Examples: 196 +(% class="box" %) 197 +((( 198 +we can use echo command to create files in LG308 for downstream. 199 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test 200 +))) 182 182 183 -{{{we can use echo command to create files in LG308 for downstream. 184 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test 202 +(% class="box" %) 203 +((( 204 +1) From logread -f of gateway, we can see it has been added as pedning. 205 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test 206 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 207 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems). 208 +))) 185 185 186 -1) From logread -f of gateway, we can see it has been added as pedning. 187 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test 188 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 189 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems). 190 - 191 -2) When there is an upstrea from end node, this downstream will be sent and shows: 210 +(% class="box" %) 211 +((( 212 +2) When there is an upstrea from end node, this downstream will be sent and shows: 192 192 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000) 193 193 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17 215 +))) 194 194 195 -3) and the end node will got: 196 -[5764825]***** UpLinkCounter= 98 ***** 217 +(% class="box" %) 218 +((( 219 +3) and the end node will got: 220 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~** 197 197 [5764827]TX on freq 905300000 Hz at DR 0 198 198 Update Interval: 60000 ms 199 199 [5765202]txDone ... ... @@ -203,11 +203,13 @@ 203 203 [5767501]rxDone 204 204 Rssi= -41 205 205 Receive data 206 -2:12345678 207 - }}}230 +2:12345678 ~-~-> Hex 231 +))) 208 208 209 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 210 -[5955877]***** UpLinkCounter= 102 ***** 233 +(% class="box" %) 234 +((( 235 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 236 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~** 211 211 [5955879]TX on freq 904100000 Hz at DR 0 212 212 Update Interval: 60000 ms 213 213 [5956254]txDone ... ... @@ -217,47 +217,50 @@ 217 217 [5958595]rxDone 218 218 Rssi= -37 219 219 Receive data 220 -2:3132333435363738 --> ASCII string "12345678" 221 - }}}246 +2:3132333435363738 ~-~-> ASCII string "12345678" 247 +))) 222 222 223 223 = 3. Example 1: Communicate with LT-22222-L = 224 224 225 225 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]] 226 226 227 -{{{#!/bin/sh 253 +(% class="box" %) 254 +((( 255 +#!/bin/sh 228 228 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server 229 229 # 230 -# Hardware Prepare: 231 -# 1. LT-22222-L x 2, both are configured to work in 232 -# 233 -# b) ABP Mode ; 258 +# Hardware Prepare: 259 +# 1. LT-22222-L x 2, both are configured to work in 260 +# a) Class C ; 261 +# b) ABP Mode ; 234 234 # c) AT+Mod=1 235 -# 2. LPS8, 236 -# a) Firmware version > 237 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them. 238 -# c) Lorawan server choose built-in 239 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory) 240 -# 241 -# How it works? 242 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload 243 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2. 244 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1 245 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2. 246 -# ( The purpose of this step is to show that the Device2 has already do the change there). 247 -# 248 -# For example: If current status of Device1 and Device2 leds shows: 249 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 250 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF 263 +# 2. LPS8, 264 +# a) Firmware version > 265 +# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them. 266 +# c) Lorawan server choose built-in 267 +# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory) 251 251 # 252 -# Step2 will cause below change: 253 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 254 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 255 -# 256 -# Step3 will cause below change: 257 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 258 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 259 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 260 -# whether the Device 2 has been changed.}}} 269 +# How it works? 270 +# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload 271 +# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2. 272 +# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1 273 +# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2. 274 +# ( The purpose of this step is to show that the Device2 has already do the change there). 275 +# 276 +# For example: If current status of Device1 and Device2 leds shows: 277 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 278 +# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF 279 +# 280 +# Step2 will cause below change: 281 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 282 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 283 +# 284 +# Step3 will cause below change: 285 +# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 286 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 287 +# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 288 +# whether the Device 2 has been changed. 289 +))) 261 261 262 262 ~1. Input keys 263 263