<
From version < 1.5 >
edited by Xiaoling
on 2022/05/12 17:52
To version < 5.1 >
edited by Xiaoling
on 2022/05/27 16:25
>
Change comment: Uploaded new attachment "image-20220527162518-4.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -10,31 +10,36 @@
10 10  * No internet connection.
11 11  * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
12 12  
13 +(((
14 +The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
15 +)))
13 13  
14 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
15 -
16 16  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
17 17  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
18 -1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
19 +1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
19 19  
20 -
21 21  = 2. How it works =
22 22  
23 23  
24 -Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]
24 +(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
25 25  
26 +
26 26  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
27 27  
28 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
29 +(% class="box infomessage" %)
30 +(((
31 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
29 29  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
30 30  AT+DADDR=2602111D
31 -}}}
34 +)))
32 32  
36 +(((
33 33  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
38 +)))
34 34  
35 35  We need to input above keys in LG308 and enable ABP decryption.
36 36  
37 -[[image:https://wiki.dragino.com/images/thumb/5/55/LG308_MQTT_1.png/600px-LG308_MQTT_1.png||height="329" width="600"]]
42 +[[image:image-20220527161119-1.png]]
38 38  
39 39  Input the ABP keys in LG308
40 40  
... ... @@ -43,9 +43,11 @@
43 43  
44 44  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
45 45  
51 +(((
46 46  We can see the log of LG308 to know this packet arrive
53 +)))
47 47  
48 -[[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
55 +[[image:image-20220527161149-2.png]]
49 49  
50 50  LG308 log by "logread -f" command
51 51  
... ... @@ -52,54 +52,66 @@
52 52  
53 53  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
54 54  
55 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
56 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
57 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
62 +(% class="box" %)
63 +(((
64 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 +0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
66 +0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
58 58  000001c
59 -}}}
68 +)))
60 60  
61 61  * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
62 62  * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
63 63  * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
64 64  
65 -
66 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
67 -in LGT92, use AT+SEND=12:hello world to send ASCII string
68 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
74 +(% class="box" %)
75 +(((
76 +(% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
77 +in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
78 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
69 69  0000000 4646 4646 4646 3946 3030 3030 3030 3546
70 -0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
80 +0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
71 71  000001c
72 -}}}
82 +)))
73 73  
74 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
75 -}}}
84 +(% class="box" %)
85 +(((
86 +(% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
87 +)))
76 76  
89 +
77 77  === 2.2.1 Decode Method ===
78 78  
79 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
92 +The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
80 80  
81 81  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
82 82  
83 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
96 +(% class="box" %)
97 +(((
98 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
84 84  0000000 4646 4646 4646 4537 3030 3030 3030 3438
85 -0000010 ccd1 7fff 7fff 017f ff7f ff00
100 +0000010 ccd1 7fff 7fff 017f ff7f ff00         
86 86  000001c
87 -}}}
102 +)))
88 88  
89 89  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
90 90  
91 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
106 +(% class="box" %)
107 +(((
108 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
92 92  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
93 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
94 -}}}
110 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
111 +)))
95 95  
96 96  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
97 97  
98 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
115 +(% class="box" %)
116 +(((
117 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
99 99  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
100 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
101 -"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
102 -}}}
119 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
120 +"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
121 +)))
103 103  
104 104  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
105 105  
... ... @@ -126,6 +126,8 @@
126 126  * the last line return is what will be used for MQTT
127 127  * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
128 128  
148 +
149 +
129 129  == 2.2 Downstream ==
130 130  
131 131  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
... ... @@ -132,12 +132,11 @@
132 132  
133 133  The file should use below format:
134 134  
156 +(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
135 135  
136 -dev_addr,imme/time,txt/hex,payload
137 -
138 138  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
139 139  
140 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
160 +(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
141 141  
142 142  * dev_addr: Inptu the device address
143 143  * imme/time:
... ... @@ -157,7 +157,6 @@
157 157  * Frequency: Transmit Frequency: example: 923300000
158 158  * rxwindow: transmit on Rx1Window or Rx2Window.
159 159  
160 -
161 161  Completely exmaple:
162 162  
163 163  * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
... ... @@ -164,7 +164,7 @@
164 164  * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
165 165  
166 166  
167 -Downstream Frequency
186 +(% style="color:#037691" %)**Downstream Frequency**
168 168  
169 169  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
170 170  
... ... @@ -178,22 +178,33 @@
178 178  * RU864: 869.1Mhz, SF12 BW125
179 179  
180 180  
181 -Examples:
200 +(% style="color:#037691" %)**Examples:**
182 182  
183 -{{{we can use echo command to create files in LG308 for downstream.
184 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
202 +(% class="box" %)
203 +(((
204 +we can use echo command to create files in LG308 for downstream.
205 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
206 +)))
185 185  
186 -1) From logread -f of gateway, we can see it has been added as pedning.
187 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
188 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
189 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
208 +(% class="box" %)
209 +(((
210 +1) From logread -f of gateway, we can see it has been added as pedning.
211 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
212 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
213 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
214 +)))
190 190  
191 -2) When there is an upstrea from end node, this downstream will be sent and shows:
216 +(% class="box" %)
217 +(((
218 +2) When there is an upstrea from end node, this downstream will be sent and shows:
192 192  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
193 193  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
221 +)))
194 194  
195 -3) and the end node will got:
196 -[5764825]***** UpLinkCounter= 98 *****
223 +(% class="box" %)
224 +(((
225 +3) and the end node will got:
226 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
197 197  [5764827]TX on freq 905300000 Hz at DR 0
198 198  Update Interval: 60000 ms
199 199  [5765202]txDone
... ... @@ -203,11 +203,13 @@
203 203  [5767501]rxDone
204 204  Rssi= -41
205 205  Receive data
206 -2:12345678 --> Hex
207 -}}}
236 +(% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
237 +)))
208 208  
209 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
210 -[5955877]***** UpLinkCounter= 102 *****
239 +(% class="box" %)
240 +(((
241 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
242 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
211 211  [5955879]TX on freq 904100000 Hz at DR 0
212 212  Update Interval: 60000 ms
213 213  [5956254]txDone
... ... @@ -217,47 +217,51 @@
217 217  [5958595]rxDone
218 218  Rssi= -37
219 219  Receive data
220 -2:3132333435363738 --> ASCII string "12345678"
221 -}}}
252 +(% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
253 +)))
222 222  
255 +
223 223  = 3. Example 1: Communicate with LT-22222-L =
224 224  
225 225  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
226 226  
227 -{{{#!/bin/sh
260 +(% class="box" %)
261 +(((
262 +#!/bin/sh
228 228  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
229 229  #
230 -# Hardware Prepare:
231 -# 1. LT-22222-L x 2, both are configured to work in
232 -# a) Class C ;
233 -# b) ABP Mode ;
265 +# Hardware Prepare:
266 +# 1. LT-22222-L x 2, both are configured to work in
267 +#   a) Class C ;
268 +# b) ABP Mode ;
234 234  # c) AT+Mod=1
235 -# 2. LPS8,
236 -# a) Firmware version >
237 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
238 -# c) Lorawan server choose built-in
239 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
240 -#
241 -# How it works?
242 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
243 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
244 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
245 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
246 -# ( The purpose of this step is to show that the Device2 has already do the change there).
247 -#
248 -# For example: If current status of Device1 and Device2 leds shows:
249 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
250 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
270 +# 2. LPS8,
271 +#   a) Firmware version >
272 +#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
273 +#   c) Lorawan server choose built-in
274 +#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
251 251  #
252 -# Step2 will cause below change:
253 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
254 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
255 -#
256 -# Step3 will cause below change:
257 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
258 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
259 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
260 -# whether the Device 2 has been changed.}}}
276 +# How it works?
277 +#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
278 +#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
279 +#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
280 +#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
281 +#   ( The purpose of this step is to show that the Device2 has already do the change there).
282 +#
283 +#  For example: If current status of Device1 and Device2 leds shows:
284 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
285 +#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
286 +#
287 +#  Step2  will cause below change:
288 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
289 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
290 +# 
291 +#  Step3 will cause below change:
292 +#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
293 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
294 +#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
295 +#  whether the Device 2 has been changed.
296 +)))
261 261  
262 262  ~1. Input keys
263 263  
... ... @@ -296,11 +296,10 @@
296 296  Full instruction video inlcude how to write scripts to fit server needed is here:
297 297  
298 298  
299 -Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
335 +(% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
300 300  
337 +(% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
301 301  
302 -Note: Firmware version must be higher than lgw-5.4.1607519907
303 -
304 304  Assume we already set up ABP keys in the gateway:
305 305  
306 306  [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
image-20220527161119-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +128.8 KB
Content
image-20220527161149-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +103.9 KB
Content
image-20220527162450-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +125.4 KB
Content
image-20220527162518-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0