Last modified by Xiaoling on 2023/04/20 18:14
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,8 @@ 1 -Contents: 1 + **Contents:** 2 2 3 +{{toc/}} 3 3 5 + 4 4 = 1. Introduction = 5 5 6 6 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as: ... ... @@ -8,27 +8,32 @@ 8 8 * No internet connection. 9 9 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]). 10 10 13 +((( 14 +The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements: 15 +))) 11 11 12 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements: 13 - 14 14 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode 15 15 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]] 16 -1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]] 19 +1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)** 17 17 18 - 19 19 = 2. How it works = 20 20 21 21 22 -Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]] 24 +(% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]** 23 23 26 + 24 24 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys: 25 25 26 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 29 +(% class="box infomessage" %) 30 +((( 31 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 27 27 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33 28 28 AT+DADDR=2602111D 29 - }}}34 +))) 30 30 36 +((( 31 31 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92. 38 +))) 32 32 33 33 We need to input above keys in LG308 and enable ABP decryption. 34 34 ... ... @@ -41,7 +41,9 @@ 41 41 42 42 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308. 43 43 51 +((( 44 44 We can see the log of LG308 to know this packet arrive 53 +))) 45 45 46 46 [[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]] 47 47 ... ... @@ -50,54 +50,65 @@ 50 50 51 51 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it. 52 52 53 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D 54 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR 55 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload 62 +(% class="box" %) 63 +((( 64 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D 65 +0000000 (% class="mark" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%) ~-~-> Got RSSI and SNR 66 +0000010 (% class="mark" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload 56 56 000001c 57 - }}}68 +))) 58 58 59 59 * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 60 60 * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 61 61 * Payload: 0xcc0c 0b63 0266 017f ff7f ff00 62 62 63 - 64 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below: 65 -in LGT92, use AT+SEND=12:hello world to send ASCII string 66 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D 74 +(% class="box" %) 75 +((( 76 +(% class="mark" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below: 77 +in LGT92, use **AT+SEND=12**:hello world to send ASCII string 78 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D 67 67 0000000 4646 4646 4646 3946 3030 3030 3030 3546 68 -0000010 6865 6c6c 6f20 776f 726c 6400 80 +0000010 6865 6c6c 6f20 776f 726c 6400 ~-~-> Got ASCII code "hello world" 69 69 000001c 70 - }}}82 +))) 71 71 72 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 73 -}}} 84 +(% class="box" %) 85 +((( 86 +(% class="mark" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 87 +))) 74 74 75 75 === 2.2.1 Decode Method === 76 76 77 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 91 +The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 78 78 79 79 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are: 80 80 81 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108 95 +(% class="box" %) 96 +((( 97 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108 82 82 0000000 4646 4646 4646 4537 3030 3030 3030 3438 83 -0000010 ccd1 7fff 7fff 017f ff7f ff00 99 +0000010 ccd1 7fff 7fff 017f ff7f ff00 84 84 000001c 85 - }}}101 +))) 86 86 87 87 If we choose ASCII decoder, the MQTT process will send out with mqtt-data: 88 88 89 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 105 +(% class="box" %) 106 +((( 107 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 90 90 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII 91 91 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00 92 - }}}110 +))) 93 93 94 94 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data 95 95 96 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 114 +(% class="box" %) 115 +((( 116 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 97 97 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65 98 98 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9, 99 99 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0} 100 - }}}120 +))) 101 101 102 102 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI. 103 103 ... ... @@ -130,12 +130,11 @@ 130 130 131 131 The file should use below format: 132 132 153 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload** 133 133 134 -dev_addr,imme/time,txt/hex,payload 135 - 136 136 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option 137 137 138 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow 157 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow** 139 139 140 140 * dev_addr: Inptu the device address 141 141 * imme/time: ... ... @@ -155,15 +155,13 @@ 155 155 * Frequency: Transmit Frequency: example: 923300000 156 156 * rxwindow: transmit on Rx1Window or Rx2Window. 157 157 158 - 159 159 Completely exmaple: 160 160 161 161 * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test 162 162 * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 163 163 182 +(% class="mark" %)**Downstream Frequency** 164 164 165 -Downstream Frequency 166 - 167 167 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below: 168 168 169 169 * EU868: 869.525Mhz, DR0(SF12BW125) ... ... @@ -175,23 +175,33 @@ 175 175 * IN865: 866.55Mhz, SF10 BW125 176 176 * RU864: 869.1Mhz, SF12 BW125 177 177 195 +(% class="mark" %)**Examples:** 178 178 179 -Examples: 197 +(% class="box" %) 198 +((( 199 +we can use echo command to create files in LG308 for downstream. 200 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test 201 +))) 180 180 181 -{{{we can use echo command to create files in LG308 for downstream. 182 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test 203 +(% class="box" %) 204 +((( 205 +1) From logread -f of gateway, we can see it has been added as pedning. 206 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test 207 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 208 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems). 209 +))) 183 183 184 -1) From logread -f of gateway, we can see it has been added as pedning. 185 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test 186 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 187 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems). 188 - 189 -2) When there is an upstrea from end node, this downstream will be sent and shows: 211 +(% class="box" %) 212 +((( 213 +2) When there is an upstrea from end node, this downstream will be sent and shows: 190 190 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000) 191 191 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17 216 +))) 192 192 193 -3) and the end node will got: 194 -[5764825]***** UpLinkCounter= 98 ***** 218 +(% class="box" %) 219 +((( 220 +3) and the end node will got: 221 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~** 195 195 [5764827]TX on freq 905300000 Hz at DR 0 196 196 Update Interval: 60000 ms 197 197 [5765202]txDone ... ... @@ -201,11 +201,13 @@ 201 201 [5767501]rxDone 202 202 Rssi= -41 203 203 Receive data 204 -2:12345678 205 - }}}231 +2:12345678 ~-~-> Hex 232 +))) 206 206 207 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 208 -[5955877]***** UpLinkCounter= 102 ***** 234 +(% class="box" %) 235 +((( 236 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 237 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~** 209 209 [5955879]TX on freq 904100000 Hz at DR 0 210 210 Update Interval: 60000 ms 211 211 [5956254]txDone ... ... @@ -215,47 +215,50 @@ 215 215 [5958595]rxDone 216 216 Rssi= -37 217 217 Receive data 218 -2:3132333435363738 --> ASCII string "12345678" 219 - }}}247 +2:3132333435363738 ~-~-> ASCII string "12345678" 248 +))) 220 220 221 221 = 3. Example 1: Communicate with LT-22222-L = 222 222 223 223 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]] 224 224 225 -{{{#!/bin/sh 254 +(% class="box" %) 255 +((( 256 +#!/bin/sh 226 226 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server 227 227 # 228 -# Hardware Prepare: 229 -# 1. LT-22222-L x 2, both are configured to work in 230 -# 231 -# b) ABP Mode ; 259 +# Hardware Prepare: 260 +# 1. LT-22222-L x 2, both are configured to work in 261 +# a) Class C ; 262 +# b) ABP Mode ; 232 232 # c) AT+Mod=1 233 -# 2. LPS8, 234 -# a) Firmware version > 235 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them. 236 -# c) Lorawan server choose built-in 237 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory) 238 -# 239 -# How it works? 240 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload 241 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2. 242 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1 243 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2. 244 -# ( The purpose of this step is to show that the Device2 has already do the change there). 245 -# 246 -# For example: If current status of Device1 and Device2 leds shows: 247 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 248 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF 264 +# 2. LPS8, 265 +# a) Firmware version > 266 +# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them. 267 +# c) Lorawan server choose built-in 268 +# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory) 249 249 # 250 -# Step2 will cause below change: 251 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 252 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 253 -# 254 -# Step3 will cause below change: 255 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 256 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 257 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 258 -# whether the Device 2 has been changed.}}} 270 +# How it works? 271 +# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload 272 +# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2. 273 +# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1 274 +# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2. 275 +# ( The purpose of this step is to show that the Device2 has already do the change there). 276 +# 277 +# For example: If current status of Device1 and Device2 leds shows: 278 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 279 +# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF 280 +# 281 +# Step2 will cause below change: 282 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 283 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 284 +# 285 +# Step3 will cause below change: 286 +# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 287 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 288 +# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 289 +# whether the Device 2 has been changed. 290 +))) 259 259 260 260 ~1. Input keys 261 261 ... ... @@ -294,11 +294,10 @@ 294 294 Full instruction video inlcude how to write scripts to fit server needed is here: 295 295 296 296 297 -Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]] 329 +(% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]] 298 298 331 +(% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907** 299 299 300 -Note: Firmware version must be higher than lgw-5.4.1607519907 301 - 302 302 Assume we already set up ABP keys in the gateway: 303 303 304 304 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
- image-20220527161119-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +128.8 KB - Content