<
From version < 1.4 >
edited by Xiaoling
on 2022/05/12 17:51
To version < 1.14 >
edited by Xiaoling
on 2022/05/27 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,8 @@
1 -Contents:
1 + **Contents:**
2 2  
3 +{{toc/}}
3 3  
5 +
4 4  = 1. Introduction =
5 5  
6 6  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
... ... @@ -8,27 +8,32 @@
8 8  * No internet connection.
9 9  * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
10 10  
13 +(((
14 +The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
15 +)))
11 11  
12 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
13 -
14 14  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
15 15  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
16 -1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
19 +1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
17 17  
18 -
19 19  = 2. How it works =
20 20  
21 21  
22 -Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]
24 +(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
23 23  
26 +
24 24  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
25 25  
26 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
29 +(% class="box infomessage" %)
30 +(((
31 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
27 27  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
28 28  AT+DADDR=2602111D
29 -}}}
34 +)))
30 30  
36 +(((
31 31  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
38 +)))
32 32  
33 33  We need to input above keys in LG308 and enable ABP decryption.
34 34  
... ... @@ -41,7 +41,9 @@
41 41  
42 42  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
43 43  
51 +(((
44 44  We can see the log of LG308 to know this packet arrive
53 +)))
45 45  
46 46  [[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
47 47  
... ... @@ -50,54 +50,65 @@
50 50  
51 51  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
52 52  
53 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
54 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
55 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
62 +(% class="box" %)
63 +(((
64 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 +0000000 (% class="mark" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
66 +0000010 (% class="mark" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
56 56  000001c
57 -}}}
68 +)))
58 58  
59 59  * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
60 60  * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
61 61  * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
62 62  
63 -
64 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
65 -in LGT92, use AT+SEND=12:hello world to send ASCII string
66 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
74 +(% class="box" %)
75 +(((
76 +(% class="mark" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
77 +in LGT92, use **AT+SEND=12**:hello world to send ASCII string
78 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
67 67  0000000 4646 4646 4646 3946 3030 3030 3030 3546
68 -0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
80 +0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
69 69  000001c
70 -}}}
82 +)))
71 71  
72 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
73 -}}}
84 +(% class="box" %)
85 +(((
86 +(% class="mark" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
87 +)))
74 74  
75 75  === 2.2.1 Decode Method ===
76 76  
77 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
91 +The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
78 78  
79 79  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
80 80  
81 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
95 +(% class="box" %)
96 +(((
97 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
82 82  0000000 4646 4646 4646 4537 3030 3030 3030 3438
83 -0000010 ccd1 7fff 7fff 017f ff7f ff00
99 +0000010 ccd1 7fff 7fff 017f ff7f ff00         
84 84  000001c
85 -}}}
101 +)))
86 86  
87 87  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
88 88  
89 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
105 +(% class="box" %)
106 +(((
107 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
90 90  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
91 91  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
92 -}}}
110 +)))
93 93  
94 94  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
95 95  
96 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
114 +(% class="box" %)
115 +(((
116 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
97 97  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
98 98  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
99 99  "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
100 -}}}
120 +)))
101 101  
102 102  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
103 103  
... ... @@ -130,12 +130,11 @@
130 130  
131 131  The file should use below format:
132 132  
153 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload**
133 133  
134 -dev_addr,imme/time,txt/hex,payload
135 -
136 136  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
137 137  
138 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
157 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
139 139  
140 140  * dev_addr: Inptu the device address
141 141  * imme/time:
... ... @@ -155,15 +155,13 @@
155 155  * Frequency: Transmit Frequency: example: 923300000
156 156  * rxwindow: transmit on Rx1Window or Rx2Window.
157 157  
158 -
159 159  Completely exmaple:
160 160  
161 161  * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
162 162  * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
163 163  
182 +(% class="mark" %)**Downstream Frequency**
164 164  
165 -Downstream Frequency
166 -
167 167  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
168 168  
169 169  * EU868: 869.525Mhz, DR0(SF12BW125)
... ... @@ -175,23 +175,33 @@
175 175  * IN865: 866.55Mhz, SF10 BW125
176 176  * RU864: 869.1Mhz, SF12 BW125
177 177  
195 +(% class="mark" %)**Examples:**
178 178  
179 -Examples:
197 +(% class="box" %)
198 +(((
199 +we can use echo command to create files in LG308 for downstream.
200 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
201 +)))
180 180  
181 -{{{we can use echo command to create files in LG308 for downstream.
182 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
203 +(% class="box" %)
204 +(((
205 +1) From logread -f of gateway, we can see it has been added as pedning.
206 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
207 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
208 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
209 +)))
183 183  
184 -1) From logread -f of gateway, we can see it has been added as pedning.
185 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
186 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
187 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
188 -
189 -2) When there is an upstrea from end node, this downstream will be sent and shows:
211 +(% class="box" %)
212 +(((
213 +2) When there is an upstrea from end node, this downstream will be sent and shows:
190 190  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
191 191  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
216 +)))
192 192  
193 -3) and the end node will got:
194 -[5764825]***** UpLinkCounter= 98 *****
218 +(% class="box" %)
219 +(((
220 +3) and the end node will got:
221 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
195 195  [5764827]TX on freq 905300000 Hz at DR 0
196 196  Update Interval: 60000 ms
197 197  [5765202]txDone
... ... @@ -201,11 +201,13 @@
201 201  [5767501]rxDone
202 202  Rssi= -41
203 203  Receive data
204 -2:12345678 --> Hex
205 -}}}
231 +2:12345678    ~-~-> Hex
232 +)))
206 206  
207 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
208 -[5955877]***** UpLinkCounter= 102 *****
234 +(% class="box" %)
235 +(((
236 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
237 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
209 209  [5955879]TX on freq 904100000 Hz at DR 0
210 210  Update Interval: 60000 ms
211 211  [5956254]txDone
... ... @@ -215,47 +215,50 @@
215 215  [5958595]rxDone
216 216  Rssi= -37
217 217  Receive data
218 -2:3132333435363738 --> ASCII string "12345678"
219 -}}}
247 +2:3132333435363738 ~-~-> ASCII string "12345678"
248 +)))
220 220  
221 221  = 3. Example 1: Communicate with LT-22222-L =
222 222  
223 223  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
224 224  
225 -{{{#!/bin/sh
254 +(% class="box" %)
255 +(((
256 +#!/bin/sh
226 226  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
227 227  #
228 -# Hardware Prepare:
229 -# 1. LT-22222-L x 2, both are configured to work in
230 -# a) Class C ;
231 -# b) ABP Mode ;
259 +# Hardware Prepare:
260 +# 1. LT-22222-L x 2, both are configured to work in
261 +#   a) Class C ;
262 +# b) ABP Mode ;
232 232  # c) AT+Mod=1
233 -# 2. LPS8,
234 -# a) Firmware version >
235 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
236 -# c) Lorawan server choose built-in
237 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
238 -#
239 -# How it works?
240 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
241 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
242 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
243 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
244 -# ( The purpose of this step is to show that the Device2 has already do the change there).
245 -#
246 -# For example: If current status of Device1 and Device2 leds shows:
247 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
248 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
264 +# 2. LPS8,
265 +#   a) Firmware version >
266 +#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
267 +#   c) Lorawan server choose built-in
268 +#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
249 249  #
250 -# Step2 will cause below change:
251 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
252 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
253 -#
254 -# Step3 will cause below change:
255 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
256 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
257 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
258 -# whether the Device 2 has been changed.}}}
270 +# How it works?
271 +#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
272 +#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
273 +#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
274 +#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
275 +#   ( The purpose of this step is to show that the Device2 has already do the change there).
276 +#
277 +#  For example: If current status of Device1 and Device2 leds shows:
278 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
279 +#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
280 +#
281 +#  Step2  will cause below change:
282 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
283 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
284 +# 
285 +#  Step3 will cause below change:
286 +#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
287 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
288 +#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
289 +#  whether the Device 2 has been changed.
290 +)))
259 259  
260 260  ~1. Input keys
261 261  
... ... @@ -294,11 +294,10 @@
294 294  Full instruction video inlcude how to write scripts to fit server needed is here:
295 295  
296 296  
297 -Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
329 +(% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
298 298  
331 +(% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
299 299  
300 -Note: Firmware version must be higher than lgw-5.4.1607519907
301 -
302 302  Assume we already set up ABP keys in the gateway:
303 303  
304 304  [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0