Last modified by Xiaoling on 2023/04/20 18:14
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,8 @@ 1 -Contents: 1 + **Contents:** 2 2 3 +{{toc/}} 3 3 5 + 4 4 = 1. Introduction = 5 5 6 6 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as: ... ... @@ -8,25 +8,32 @@ 8 8 * No internet connection. 9 9 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]). 10 10 13 +((( 14 +The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements: 15 +))) 11 11 12 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements: 13 - 14 14 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode 15 15 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]] 16 -1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]] 19 +1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)** 17 17 21 += 2. How it works = 18 18 19 -= 2. How it works 20 -\\Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]] = 21 21 24 +(% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]** 25 + 26 + 22 22 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys: 23 23 24 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 29 +(% class="box infomessage" %) 30 +((( 31 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df 25 25 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33 26 26 AT+DADDR=2602111D 27 - }}}34 +))) 28 28 36 +((( 29 29 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92. 38 +))) 30 30 31 31 We need to input above keys in LG308 and enable ABP decryption. 32 32 ... ... @@ -39,7 +39,9 @@ 39 39 40 40 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308. 41 41 51 +((( 42 42 We can see the log of LG308 to know this packet arrive 53 +))) 43 43 44 44 [[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]] 45 45 ... ... @@ -48,54 +48,65 @@ 48 48 49 49 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it. 50 50 51 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D 52 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR 53 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload 62 +(% class="box" %) 63 +((( 64 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D 65 +0000000 (% class="mark" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%) ~-~-> Got RSSI and SNR 66 +0000010 (% class="mark" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload 54 54 000001c 55 - }}}68 +))) 56 56 57 57 * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97 58 58 * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5 59 59 * Payload: 0xcc0c 0b63 0266 017f ff7f ff00 60 60 61 - 62 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below: 63 -in LGT92, use AT+SEND=12:hello world to send ASCII string 64 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D 74 +(% class="box" %) 75 +((( 76 +(% class="mark" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below: 77 +in LGT92, use **AT+SEND=12**:hello world to send ASCII string 78 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D 65 65 0000000 4646 4646 4646 3946 3030 3030 3030 3546 66 -0000010 6865 6c6c 6f20 776f 726c 6400 80 +0000010 6865 6c6c 6f20 776f 726c 6400 ~-~-> Got ASCII code "hello world" 67 67 000001c 68 - }}}82 +))) 69 69 70 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 71 -}}} 84 +(% class="box" %) 85 +((( 86 +(% class="mark" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload. 87 +))) 72 72 73 73 === 2.2.1 Decode Method === 74 74 75 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 91 +The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent. 76 76 77 77 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are: 78 78 79 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108 95 +(% class="box" %) 96 +((( 97 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108 80 80 0000000 4646 4646 4646 4537 3030 3030 3030 3438 81 -0000010 ccd1 7fff 7fff 017f ff7f ff00 99 +0000010 ccd1 7fff 7fff 017f ff7f ff00 82 82 000001c 83 - }}}101 +))) 84 84 85 85 If we choose ASCII decoder, the MQTT process will send out with mqtt-data: 86 86 87 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 105 +(% class="box" %) 106 +((( 107 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 88 88 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII 89 89 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00 90 - }}}110 +))) 91 91 92 92 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data 93 93 94 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 114 +(% class="box" %) 115 +((( 116 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data 95 95 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65 96 96 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9, 97 97 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0} 98 - }}}120 +))) 99 99 100 100 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI. 101 101 ... ... @@ -128,12 +128,11 @@ 128 128 129 129 The file should use below format: 130 130 153 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload** 131 131 132 -dev_addr,imme/time,txt/hex,payload 133 - 134 134 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option 135 135 136 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow 157 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow** 137 137 138 138 * dev_addr: Inptu the device address 139 139 * imme/time: ... ... @@ -153,15 +153,13 @@ 153 153 * Frequency: Transmit Frequency: example: 923300000 154 154 * rxwindow: transmit on Rx1Window or Rx2Window. 155 155 156 - 157 157 Completely exmaple: 158 158 159 159 * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test 160 160 * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test 161 161 182 +(% class="mark" %)**Downstream Frequency** 162 162 163 -Downstream Frequency 164 - 165 165 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below: 166 166 167 167 * EU868: 869.525Mhz, DR0(SF12BW125) ... ... @@ -173,23 +173,33 @@ 173 173 * IN865: 866.55Mhz, SF10 BW125 174 174 * RU864: 869.1Mhz, SF12 BW125 175 175 195 +(% class="mark" %)**Examples:** 176 176 177 -Examples: 197 +(% class="box" %) 198 +((( 199 +we can use echo command to create files in LG308 for downstream. 200 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test 201 +))) 178 178 179 -{{{we can use echo command to create files in LG308 for downstream. 180 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test 203 +(% class="box" %) 204 +((( 205 +1) From logread -f of gateway, we can see it has been added as pedning. 206 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test 207 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 208 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems). 209 +))) 181 181 182 -1) From logread -f of gateway, we can see it has been added as pedning. 183 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test 184 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90 185 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems). 186 - 187 -2) When there is an upstrea from end node, this downstream will be sent and shows: 211 +(% class="box" %) 212 +((( 213 +2) When there is an upstrea from end node, this downstream will be sent and shows: 188 188 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000) 189 189 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17 216 +))) 190 190 191 -3) and the end node will got: 192 -[5764825]***** UpLinkCounter= 98 ***** 218 +(% class="box" %) 219 +((( 220 +3) and the end node will got: 221 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~** 193 193 [5764827]TX on freq 905300000 Hz at DR 0 194 194 Update Interval: 60000 ms 195 195 [5765202]txDone ... ... @@ -199,11 +199,13 @@ 199 199 [5767501]rxDone 200 200 Rssi= -41 201 201 Receive data 202 -2:12345678 203 - }}}231 +2:12345678 ~-~-> Hex 232 +))) 204 204 205 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 206 -[5955877]***** UpLinkCounter= 102 ***** 234 +(% class="box" %) 235 +((( 236 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got: 237 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~** 207 207 [5955879]TX on freq 904100000 Hz at DR 0 208 208 Update Interval: 60000 ms 209 209 [5956254]txDone ... ... @@ -213,47 +213,50 @@ 213 213 [5958595]rxDone 214 214 Rssi= -37 215 215 Receive data 216 -2:3132333435363738 --> ASCII string "12345678" 217 - }}}247 +2:3132333435363738 ~-~-> ASCII string "12345678" 248 +))) 218 218 219 219 = 3. Example 1: Communicate with LT-22222-L = 220 220 221 221 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]] 222 222 223 -{{{#!/bin/sh 254 +(% class="box" %) 255 +((( 256 +#!/bin/sh 224 224 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server 225 225 # 226 -# Hardware Prepare: 227 -# 1. LT-22222-L x 2, both are configured to work in 228 -# 229 -# b) ABP Mode ; 259 +# Hardware Prepare: 260 +# 1. LT-22222-L x 2, both are configured to work in 261 +# a) Class C ; 262 +# b) ABP Mode ; 230 230 # c) AT+Mod=1 231 -# 2. LPS8, 232 -# a) Firmware version > 233 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them. 234 -# c) Lorawan server choose built-in 235 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory) 236 -# 237 -# How it works? 238 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload 239 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2. 240 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1 241 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2. 242 -# ( The purpose of this step is to show that the Device2 has already do the change there). 243 -# 244 -# For example: If current status of Device1 and Device2 leds shows: 245 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 246 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF 264 +# 2. LPS8, 265 +# a) Firmware version > 266 +# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them. 267 +# c) Lorawan server choose built-in 268 +# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory) 247 247 # 248 -# Step2 will cause below change: 249 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 250 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 251 -# 252 -# Step3 will cause below change: 253 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 254 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 255 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 256 -# whether the Device 2 has been changed.}}} 270 +# How it works? 271 +# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload 272 +# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2. 273 +# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1 274 +# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2. 275 +# ( The purpose of this step is to show that the Device2 has already do the change there). 276 +# 277 +# For example: If current status of Device1 and Device2 leds shows: 278 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 279 +# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF 280 +# 281 +# Step2 will cause below change: 282 +# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF 283 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 284 +# 285 +# Step3 will cause below change: 286 +# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON 287 +# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON 288 +# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm 289 +# whether the Device 2 has been changed. 290 +))) 257 257 258 258 ~1. Input keys 259 259 ... ... @@ -292,11 +292,10 @@ 292 292 Full instruction video inlcude how to write scripts to fit server needed is here: 293 293 294 294 295 -Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]] 329 +(% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]] 296 296 331 +(% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907** 297 297 298 -Note: Firmware version must be higher than lgw-5.4.1607519907 299 - 300 300 Assume we already set up ABP keys in the gateway: 301 301 302 302 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
- image-20220527161119-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +128.8 KB - Content