<
From version < 1.3 >
edited by Xiaoling
on 2022/05/12 17:50
To version < 16.9 >
edited by Xiaoling
on 2022/07/22 11:47
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,36 +1,52 @@
1 -Contents:
1 +**Table of Contents:**
2 2  
3 +{{toc/}}
3 3  
5 +
6 +
4 4  = 1. Introduction =
5 5  
9 +
6 6  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
7 7  
8 8  * No internet connection.
9 -* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
13 +* User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
10 10  
15 +(((
16 +The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 +)))
11 11  
12 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
13 -
14 14  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
15 15  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
16 -1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
21 +1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
17 17  
18 18  
19 -= 2. How it works
20 -\\Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]] =
21 21  
25 +
26 += 2. How it works =
27 +
28 +
29 +(% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
30 +
31 +
22 22  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
23 23  
24 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
34 +(% class="box infomessage" %)
35 +(((
36 +**AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
25 25  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
26 -AT+DADDR=2602111D
27 -}}}
38 +AT+DADDR=2602111D**
39 +)))
28 28  
41 +(((
29 29  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
30 30  
44 +
45 +)))
46 +
31 31  We need to input above keys in LG308 and enable ABP decryption.
32 32  
33 -[[image:https://wiki.dragino.com/images/thumb/5/55/LG308_MQTT_1.png/600px-LG308_MQTT_1.png||height="329" width="600"]]
49 +[[image:image-20220527161119-1.png]]
34 34  
35 35  Input the ABP keys in LG308
36 36  
... ... @@ -37,84 +37,111 @@
37 37  
38 38  == 2.1 Upstream ==
39 39  
56 +
40 40  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
41 41  
59 +(((
42 42  We can see the log of LG308 to know this packet arrive
61 +)))
43 43  
44 -[[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
63 +[[image:image-20220527161149-2.png]]
45 45  
46 -LG308 log by "logread -f" command
65 +LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
47 47  
48 48  
49 49  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
50 50  
51 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
52 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
53 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
70 +(% class="box" %)
71 +(((
72 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
73 +0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
74 +0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
54 54  000001c
55 -}}}
76 +)))
56 56  
57 -* RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
58 -* SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
59 -* Payload: 0xcc0c 0b63 0266 017f ff7f ff00
78 +* **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
79 +* **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
80 +* **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
60 60  
61 61  
62 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
63 -in LGT92, use AT+SEND=12:hello world to send ASCII string
64 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
83 +
84 +
85 +(% class="box" %)
86 +(((
87 +(% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
88 +in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
89 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 65  0000000 4646 4646 4646 3946 3030 3030 3030 3546
66 -0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
91 +0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
67 67  000001c
68 -}}}
93 +)))
69 69  
70 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
71 -}}}
95 +(% class="box" %)
96 +(((
97 +(% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
98 +)))
72 72  
100 +
73 73  === 2.2.1 Decode Method ===
74 74  
75 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
76 76  
104 +The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
105 +
77 77  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
78 78  
79 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
108 +(% class="box" %)
109 +(((
110 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
80 80  0000000 4646 4646 4646 4537 3030 3030 3030 3438
81 -0000010 ccd1 7fff 7fff 017f ff7f ff00
112 +0000010 ccd1 7fff 7fff 017f ff7f ff00         
82 82  000001c
83 -}}}
114 +)))
84 84  
116 +
85 85  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
86 86  
87 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
119 +(% class="box" %)
120 +(((
121 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
88 88  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
89 -Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
90 -}}}
123 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
124 +)))
91 91  
126 +
92 92  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
93 93  
94 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
129 +(% class="box" %)
130 +(((
131 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
95 95  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
96 -Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
97 -"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
98 -}}}
133 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
134 +"EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
135 +)))
99 99  
100 100  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
101 101  
102 102  
140 +
103 103  === 2.2.2 How to Decode My End Node ===
104 104  
105 -1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
106 106  
107 -2/ Don't choose MQTT service, use LoRaWAN.
144 +**1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
108 108  
109 -3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
146 +**2. **Don't choose MQTT service, use LoRaWAN.
110 110  
111 -4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
148 +**3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
112 112  
150 +**4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
151 +
113 113  {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
114 114  }}}
115 115  
116 -5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
155 +**5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
117 117  
157 +
158 +(% style="color:red" %)
159 +**Some notice:**
160 +
118 118  * RSSI and SNR are added when gateway receive the packet, so there is always this field.
119 119  * If you rename the file, please make it executable.
120 120  * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
... ... @@ -122,45 +122,49 @@
122 122  * the last line return is what will be used for MQTT
123 123  * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
124 124  
168 +
169 +
170 +
171 +
125 125  == 2.2 Downstream ==
126 126  
174 +
127 127  In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
128 128  
129 129  The file should use below format:
130 130  
179 +(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
131 131  
132 -dev_addr,imme/time,txt/hex,payload
133 -
134 134  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
135 135  
136 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
183 +(% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
137 137  
138 -* dev_addr: Inptu the device address
139 -* imme/time:
185 +* **dev_addr:** Inptu the device address
186 +* **imme/time:**
140 140  ** imme: send downstream immediately,For Class C end node.
141 141  ** time: send downstream after receive device's uplink. For Class A end node
142 -* txt/hex:
189 +* **txt/hex:**
143 143  ** txt: send payload in ASCII
144 144  ** hex: send payload in HEX
145 -* payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
146 -* txpw: Transmit Power. example: 20
147 -* txbw: bandwidth:
192 +* **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
193 +* **txpw:** Transmit Power. example: 20
194 +* **txbw:** bandwidth:
148 148  ** 1: 500 kHz
149 149  ** 2: 250 kHz
150 150  ** 3: 125 kHz
151 151  ** 4: 62.5 kHz
152 -* SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
153 -* Frequency: Transmit Frequency: example: 923300000
154 -* rxwindow: transmit on Rx1Window or Rx2Window.
199 +* **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
200 +* **Frequency:** Transmit Frequency: example: 923300000
201 +* **rxwindow:** transmit on Rx1Window or Rx2Window.
155 155  
156 156  
157 -Completely exmaple:
204 +(% style="color:blue" %)**Completely exmaple:**
158 158  
159 -* Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
160 -* New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
206 +* **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
207 +* **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
161 161  
162 162  
163 -Downstream Frequency
210 +(% style="color:#037691" %)**Downstream Frequency**
164 164  
165 165  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
166 166  
... ... @@ -174,22 +174,27 @@
174 174  * RU864: 869.1Mhz, SF12 BW125
175 175  
176 176  
177 -Examples:
224 +(% style="color:#037691" %)**Examples:**
178 178  
179 -{{{we can use echo command to create files in LG308 for downstream.
180 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
226 +(% class="box" %)
227 +(((
228 +we can use echo command to create files in LG308 for downstream.
229 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
181 181  
182 -1) From logread -f of gateway, we can see it has been added as pedning.
183 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
184 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
185 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
186 186  
187 -2) When there is an upstrea from end node, this downstream will be sent and shows:
232 +**1)** From logread -f of gateway, we can see it has been added as pedning.
233 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
234 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
235 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
236 +
237 +
238 +**2)** When there is an upstrea from end node, this downstream will be sent and shows:
188 188  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
189 189  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
190 190  
191 -3) and the end node will got:
192 -[5764825]***** UpLinkCounter= 98 *****
242 +
243 +**3)** and the end node will got:
244 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
193 193  [5764827]TX on freq 905300000 Hz at DR 0
194 194  Update Interval: 60000 ms
195 195  [5765202]txDone
... ... @@ -199,11 +199,11 @@
199 199  [5767501]rxDone
200 200  Rssi= -41
201 201  Receive data
202 -2:12345678 --> Hex
203 -}}}
254 +(% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
204 204  
205 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
206 -[5955877]***** UpLinkCounter= 102 *****
256 +
257 +**4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
258 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
207 207  [5955879]TX on freq 904100000 Hz at DR 0
208 208  Update Interval: 60000 ms
209 209  [5956254]txDone
... ... @@ -213,79 +213,90 @@
213 213  [5958595]rxDone
214 214  Rssi= -37
215 215  Receive data
216 -2:3132333435363738 --> ASCII string "12345678"
217 -}}}
268 +(% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
269 +)))
218 218  
271 +
219 219  = 3. Example 1: Communicate with LT-22222-L =
220 220  
274 +
221 221  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
222 222  
223 -{{{#!/bin/sh
277 +(% class="box" %)
278 +(((
279 +//#!/bin/sh
224 224  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
225 225  #
226 -# Hardware Prepare:
227 -# 1. LT-22222-L x 2, both are configured to work in
228 -# a) Class C ;
229 -# b) ABP Mode ;
282 +# Hardware Prepare:
283 +# 1. LT-22222-L x 2, both are configured to work in
284 +#   a) Class C ;
285 +# b) ABP Mode ;
230 230  # c) AT+Mod=1
231 -# 2. LPS8,
232 -# a) Firmware version >
233 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
234 -# c) Lorawan server choose built-in
235 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
236 -#
237 -# How it works?
238 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
239 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
240 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
241 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
242 -# ( The purpose of this step is to show that the Device2 has already do the change there).
243 -#
244 -# For example: If current status of Device1 and Device2 leds shows:
245 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
246 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
287 +# 2. LPS8,
288 +#   a) Firmware version >
289 +#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
290 +#   c) Lorawan server choose built-in
291 +#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
247 247  #
248 -# Step2 will cause below change:
249 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
250 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
251 -#
252 -# Step3 will cause below change:
253 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
254 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
255 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
256 -# whether the Device 2 has been changed.}}}
293 +# How it works?
294 +#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
295 +#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
296 +#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
297 +#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
298 +#   ( The purpose of this step is to show that the Device2 has already do the change there).
299 +#
300 +#  For example: If current status of Device1 and Device2 leds shows:
301 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
302 +#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
303 +#
304 +#  Step2  will cause below change:
305 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
306 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
307 +# 
308 +#  Step3 will cause below change:
309 +#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
310 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
311 +#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
312 +#  whether the Device 2 has been changed.//
313 +)))
257 257  
258 -~1. Input keys
259 259  
260 -[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
316 +**~1. Input keys**
261 261  
318 +[[image:image-20220527162450-3.png]]
319 +
262 262  Input Keys in LPS8
263 263  
264 -2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
265 265  
266 -3. Choose Built-in server
323 +**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
267 267  
268 -[[image:https://wiki.dragino.com/images/thumb/d/d7/LPS8_LT-22222_2.png/600px-LPS8_LT-22222_2.png||height="264" width="600"]]
269 269  
326 +**3. Choose Built-in server**
327 +
328 +[[image:image-20220527162518-4.png]]
329 +
270 270  Choose Built-in server
271 271  
272 -4. Run the script.
273 273  
274 -[[image:https://wiki.dragino.com/images/thumb/3/39/LPS8_LT-22222_3.png/600px-LPS8_LT-22222_3.png||height="389" width="600"]]
333 +**4. Run the script.**
275 275  
335 +[[image:image-20220527162552-5.png]]
336 +
276 276  Run the script
277 277  
278 -5. Output:
279 279  
280 -[[image:https://wiki.dragino.com/images/thumb/f/fe/LPS8_LT-22222_4.png/600px-LPS8_LT-22222_4.png||height="433" width="600"]]
340 +**5. Output:**
281 281  
342 +[[image:image-20220527162619-6.png]]
343 +
282 282  Output from LPS8
283 283  
284 284  
285 285  = 4. Example 2: Communicate to TCP Server =
286 286  
287 -[[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
288 288  
350 +[[image:image-20220527162648-7.png]]
351 +
289 289  Network Structure
290 290  
291 291  
... ... @@ -292,35 +292,42 @@
292 292  Full instruction video inlcude how to write scripts to fit server needed is here:
293 293  
294 294  
295 -Video Instruction: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
358 +(% style="color:#037691" %)**Video Instruction**(%%)**[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
296 296  
297 297  
298 -Note: Firmware version must be higher than lgw-5.4.1607519907
361 +(% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
299 299  
363 +
300 300  Assume we already set up ABP keys in the gateway:
301 301  
302 -[[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
366 +[[image:image-20220527162852-8.png]]
303 303  
304 304  Input Keys in LPS8
305 305  
306 -run socket tool in PC
307 307  
308 -[[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
309 309  
372 +**run socket tool in PC**
373 +
374 +[[image:image-20220527163028-9.png]]
375 +
376 +
310 310  Socket tool
311 311  
312 312  
313 -Input Server address and port
314 314  
315 -[[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
381 +**Input Server address and port**
316 316  
383 +[[image:image-20220527163106-10.png]]
384 +
317 317  Input Server address and port
318 318  
319 319  
320 -See value receive in socket tool. :
321 321  
322 -[[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
389 +**See value receive in socket tool:**
323 323  
391 +[[image:image-20220527163144-11.png]]
392 +
324 324  value receive in socket tool
325 325  
395 +
326 326  If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
image-20220527161119-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +128.8 KB
Content
image-20220527161149-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +103.9 KB
Content
image-20220527162450-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +125.4 KB
Content
image-20220527162518-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.8 KB
Content
image-20220527162552-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +33.6 KB
Content
image-20220527162619-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +41.0 KB
Content
image-20220527162648-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +151.7 KB
Content
image-20220527162852-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +125.6 KB
Content
image-20220527163028-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.9 KB
Content
image-20220527163106-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.5 KB
Content
image-20220527163144-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0