<
From version < 1.3 >
edited by Xiaoling
on 2022/05/12 17:50
To version < 1.10 >
edited by Xiaoling
on 2022/05/12 18:08
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,8 @@
1 -Contents:
1 + **Contents:**
2 2  
3 +{{toc/}}
3 3  
5 +
4 4  = 1. Introduction =
5 5  
6 6  The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
... ... @@ -8,25 +8,31 @@
8 8  * No internet connection.
9 9  * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
10 10  
13 +(((
14 +The basic of this feature is the decoding of **LoRaWAN ABP End Node**. Requirements:
15 +)))
11 11  
12 -The basic of this feature is the decoding of LoRaWAN ABP End Node. Requirements:
13 -
14 14  1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
15 15  1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
16 16  1. Firmware version for below instruction:[[Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]]
17 17  
21 += 2. How it works =
18 18  
19 -= 2. How it works
20 -\\Video Instruction: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]] =
21 21  
24 +**Video Instruction**: [[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]
25 +
22 22  Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
23 23  
24 -{{{AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
28 +(% class="box infomessage" %)
29 +(((
30 +AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
25 25  AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
26 26  AT+DADDR=2602111D
27 -}}}
33 +)))
28 28  
35 +(((
29 29  and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
37 +)))
30 30  
31 31  We need to input above keys in LG308 and enable ABP decryption.
32 32  
... ... @@ -39,7 +39,9 @@
39 39  
40 40  Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
41 41  
50 +(((
42 42  We can see the log of LG308 to know this packet arrive
52 +)))
43 43  
44 44  [[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
45 45  
... ... @@ -48,54 +48,65 @@
48 48  
49 49  The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
50 50  
51 -{{{root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
52 -0000000 4646 4646 4646 3946 3030 3030 3030 3546 --> Got RSSI and SNR
53 -0000010 cc0c 0b63 0266 017f ff7f ff00 --> Payload
61 +(% class="box" %)
62 +(((
63 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
64 +0000000 (% class="mark" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
65 +0000010 (% class="mark" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
54 54  000001c
55 -}}}
67 +)))
56 56  
57 57  * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
58 58  * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
59 59  * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
60 60  
61 -
62 -{{{Notice 1: The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
63 -in LGT92, use AT+SEND=12:hello world to send ASCII string
64 -root@dragino-1d25dc:~# hexdump /var/iot/channels/2602111D
73 +(% class="box" %)
74 +(((
75 +(% class="mark" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
76 +in LGT92, use **AT+SEND=12**:hello world to send ASCII string
77 +root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 65  0000000 4646 4646 4646 3946 3030 3030 3030 3546
66 -0000010 6865 6c6c 6f20 776f 726c 6400 --> Got ASCII code "hello world"
79 +0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
67 67  000001c
68 -}}}
81 +)))
69 69  
70 -{{{Notice 2: The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
71 -}}}
83 +(% class="box" %)
84 +(((
85 +(% class="mark" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
86 +)))
72 72  
73 73  === 2.2.1 Decode Method ===
74 74  
75 -The decode methods: ASCII String, Decode_LHT65 doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
90 +The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
76 76  
77 77  For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
78 78  
79 -{{{root@dragino-1baf44:~# hexdump /var/iot/channels/01826108
94 +(% class="box" %)
95 +(((
96 +root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
80 80  0000000 4646 4646 4646 4537 3030 3030 3030 3438
81 -0000010 ccd1 7fff 7fff 017f ff7f ff00
98 +0000010 ccd1 7fff 7fff 017f ff7f ff00         
82 82  000001c
83 -}}}
100 +)))
84 84  
85 85  If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
86 86  
87 -{{{Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
104 +(% class="box" %)
105 +(((
106 +Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
88 88  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
89 89  Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
90 -}}}
109 +)))
91 91  
92 92  If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
93 93  
94 -{{{Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
113 +(% class="box" %)
114 +(((
115 +Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
95 95  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
96 96  Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
97 97  "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
98 -}}}
119 +)))
99 99  
100 100  Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
101 101  
... ... @@ -128,12 +128,11 @@
128 128  
129 129  The file should use below format:
130 130  
152 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload**
131 131  
132 -dev_addr,imme/time,txt/hex,payload
133 -
134 134  Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
135 135  
136 -dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow
156 +(% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
137 137  
138 138  * dev_addr: Inptu the device address
139 139  * imme/time:
... ... @@ -153,15 +153,13 @@
153 153  * Frequency: Transmit Frequency: example: 923300000
154 154  * rxwindow: transmit on Rx1Window or Rx2Window.
155 155  
156 -
157 157  Completely exmaple:
158 158  
159 159  * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
160 160  * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
161 161  
181 +(% class="mark" %)**Downstream Frequency**
162 162  
163 -Downstream Frequency
164 -
165 165  The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
166 166  
167 167  * EU868: 869.525Mhz, DR0(SF12BW125)
... ... @@ -173,23 +173,33 @@
173 173  * IN865: 866.55Mhz, SF10 BW125
174 174  * RU864: 869.1Mhz, SF12 BW125
175 175  
194 +(% class="mark" %)**Examples:**
176 176  
177 -Examples:
196 +(% class="box" %)
197 +(((
198 +we can use echo command to create files in LG308 for downstream.
199 +root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
200 +)))
178 178  
179 -{{{we can use echo command to create files in LG308 for downstream.
180 -root@dragino-1d25dc:~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
202 +(% class="box" %)
203 +(((
204 +1) From logread -f of gateway, we can see it has been added as pedning.
205 +lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
206 +lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
207 +lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
208 +)))
181 181  
182 -1) From logread -f of gateway, we can see it has been added as pedning.
183 -lora_pkt_fwd[4286]: INFO~ [DNLK]Looking file : test
184 -lora_pkt_fwd[4286]: INFO~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
185 -lora_pkt_fwd[4286]: INFO~ [DNLK] DNLINK PENDING!(1 elems).
186 -
187 -2) When there is an upstrea from end node, this downstream will be sent and shows:
210 +(% class="box" %)
211 +(((
212 +2) When there is an upstrea from end node, this downstream will be sent and shows:
188 188  lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
189 189  lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
215 +)))
190 190  
191 -3) and the end node will got:
192 -[5764825]***** UpLinkCounter= 98 *****
217 +(% class="box" %)
218 +(((
219 +3) and the end node will got:
220 +[5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
193 193  [5764827]TX on freq 905300000 Hz at DR 0
194 194  Update Interval: 60000 ms
195 195  [5765202]txDone
... ... @@ -199,11 +199,13 @@
199 199  [5767501]rxDone
200 200  Rssi= -41
201 201  Receive data
202 -2:12345678 --> Hex
203 -}}}
230 +2:12345678    ~-~-> Hex
231 +)))
204 204  
205 -{{{4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
206 -[5955877]***** UpLinkCounter= 102 *****
233 +(% class="box" %)
234 +(((
235 +4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
236 +[5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
207 207  [5955879]TX on freq 904100000 Hz at DR 0
208 208  Update Interval: 60000 ms
209 209  [5956254]txDone
... ... @@ -213,47 +213,50 @@
213 213  [5958595]rxDone
214 214  Rssi= -37
215 215  Receive data
216 -2:3132333435363738 --> ASCII string "12345678"
217 -}}}
246 +2:3132333435363738 ~-~-> ASCII string "12345678"
247 +)))
218 218  
219 219  = 3. Example 1: Communicate with LT-22222-L =
220 220  
221 221  Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
222 222  
223 -{{{#!/bin/sh
253 +(% class="box" %)
254 +(((
255 +#!/bin/sh
224 224  # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
225 225  #
226 -# Hardware Prepare:
227 -# 1. LT-22222-L x 2, both are configured to work in
228 -# a) Class C ;
229 -# b) ABP Mode ;
258 +# Hardware Prepare:
259 +# 1. LT-22222-L x 2, both are configured to work in
260 +#   a) Class C ;
261 +# b) ABP Mode ;
230 230  # c) AT+Mod=1
231 -# 2. LPS8,
232 -# a) Firmware version >
233 -# b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
234 -# c) Lorawan server choose built-in
235 -# d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
236 -#
237 -# How it works?
238 -# a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
239 -# b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
240 -# c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
241 -# and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
242 -# ( The purpose of this step is to show that the Device2 has already do the change there).
243 -#
244 -# For example: If current status of Device1 and Device2 leds shows:
245 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
246 -# Device2: DI1: OFF, DI2: OFF , DO1: OFF, DO2: OFF
263 +# 2. LPS8,
264 +#   a) Firmware version >
265 +#   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
266 +#   c) Lorawan server choose built-in
267 +#   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
247 247  #
248 -# Step2 will cause below change:
249 -# Device1: DI1: ON, DI2: ON , DO1: OFF, DO2: OFF
250 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
251 -#
252 -# Step3 will cause below change:
253 -# Device1: DI1: ON, DI2: ON , DO1: ON, DO2: ON
254 -# Device2: DI1: OFF, DI2: OFF , DO1: ON, DO2: ON
255 -# So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
256 -# whether the Device 2 has been changed.}}}
269 +# How it works?
270 +#   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
271 +#   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
272 +#   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
273 +#   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
274 +#   ( The purpose of this step is to show that the Device2 has already do the change there).
275 +#
276 +#  For example: If current status of Device1 and Device2 leds shows:
277 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
278 +#  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
279 +#
280 +#  Step2  will cause below change:
281 +#  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
282 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
283 +# 
284 +#  Step3 will cause below change:
285 +#  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
286 +#  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
287 +#  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
288 +#  whether the Device 2 has been changed.
289 +)))
257 257  
258 258  ~1. Input keys
259 259  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0