Version 16.7 by Xiaoling on 2022/07/22 11:46

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23 = 2. How it works =
24
25
26 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
27
28
29 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
30
31 (% class="box infomessage" %)
32 (((
33 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
34 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
35 AT+DADDR=2602111D**
36 )))
37
38 (((
39 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
40
41
42 )))
43
44 We need to input above keys in LG308 and enable ABP decryption.
45
46 [[image:image-20220527161119-1.png]]
47
48 Input the ABP keys in LG308
49
50
51 == 2.1 Upstream ==
52
53
54 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
55
56 (((
57 We can see the log of LG308 to know this packet arrive
58 )))
59
60 [[image:image-20220527161149-2.png]]
61
62 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
63
64
65 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
66
67 (% class="box" %)
68 (((
69 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
70 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
71 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
72 000001c
73 )))
74
75 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
76 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
77 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
78
79 (% class="box" %)
80 (((
81 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
82 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
83 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
84 0000000 4646 4646 4646 3946 3030 3030 3030 3546
85 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
86 000001c
87 )))
88
89 (% class="box" %)
90 (((
91 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
92 )))
93
94
95 === 2.2.1 Decode Method ===
96
97
98 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
99
100 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
101
102 (% class="box" %)
103 (((
104 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
105 0000000 4646 4646 4646 4537 3030 3030 3030 3438
106 0000010 ccd1 7fff 7fff 017f ff7f ff00         
107 000001c
108 )))
109
110
111 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
112
113 (% class="box" %)
114 (((
115 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
116 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
117 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
118 )))
119
120
121 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
122
123 (% class="box" %)
124 (((
125 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
126 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
127 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
128 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
129 )))
130
131 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
132
133
134
135 === 2.2.2 How to Decode My End Node ===
136
137
138 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
139
140 **2. **Don't choose MQTT service, use LoRaWAN.
141
142 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
143
144 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
145
146 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
147 }}}
148
149 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
150
151
152 (% style="color:red" %)
153 **Some notice:**
154
155 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
156 * If you rename the file, please make it executable.
157 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
158 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
159 * the last line return is what will be used for MQTT
160 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
161
162
163 == 2.2 Downstream ==
164
165
166 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
167
168 The file should use below format:
169
170 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
171
172 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
173
174 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
175
176 * **dev_addr:** Inptu the device address
177 * **imme/time:**
178 ** imme: send downstream immediately,For Class C end node.
179 ** time: send downstream after receive device's uplink. For Class A end node
180 * **txt/hex:**
181 ** txt: send payload in ASCII
182 ** hex: send payload in HEX
183 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
184 * **txpw:** Transmit Power. example: 20
185 * **txbw:** bandwidth:
186 ** 1: 500 kHz
187 ** 2: 250 kHz
188 ** 3: 125 kHz
189 ** 4: 62.5 kHz
190 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
191 * **Frequency:** Transmit Frequency: example: 923300000
192 * **rxwindow:** transmit on Rx1Window or Rx2Window.
193
194
195
196 (% style="color:blue" %)**Completely exmaple:**
197
198 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
199 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
200
201
202
203 (% style="color:#037691" %)**Downstream Frequency**
204
205 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
206
207 * EU868: 869.525Mhz, DR0(SF12BW125)
208 * US915: 923.3Mhz, SF12 BW500
209 * CN470: 505.3Mhz, SF12 BW125
210 * AU915: 923.3Mhz, SF12 BW500
211 * AS923: 923.2Mhz, SF10 BW125
212 * KR920: 921.9Mhz, SF12 BW125
213 * IN865: 866.55Mhz, SF10 BW125
214 * RU864: 869.1Mhz, SF12 BW125
215
216
217
218 (% style="color:#037691" %)**Examples:**
219
220 (% class="box" %)
221 (((
222 we can use echo command to create files in LG308 for downstream.
223 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
224
225
226 **1)** From logread -f of gateway, we can see it has been added as pedning.
227 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
228 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
229 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
230
231
232 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
233 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
234 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
235
236
237 **3)** and the end node will got:
238 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
239 [5764827]TX on freq 905300000 Hz at DR 0
240 Update Interval: 60000 ms
241 [5765202]txDone
242 [5766193]RX on freq 927500000 Hz at DR 10
243 [5766225]rxTimeOut
244 [5767205]RX on freq 923300000 Hz at DR 8
245 [5767501]rxDone
246 Rssi= -41
247 Receive data
248 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
249
250
251 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
252 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
253 [5955879]TX on freq 904100000 Hz at DR 0
254 Update Interval: 60000 ms
255 [5956254]txDone
256 [5957246]RX on freq 923900000 Hz at DR 10
257 [5957278]rxTimeOut
258 [5958257]RX on freq 923300000 Hz at DR 8
259 [5958595]rxDone
260 Rssi= -37
261 Receive data
262 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
263 )))
264
265
266 = 3. Example 1: Communicate with LT-22222-L =
267
268
269 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
270
271 (% class="box" %)
272 (((
273 //#!/bin/sh
274 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
275 #
276 # Hardware Prepare:
277 # 1. LT-22222-L x 2, both are configured to work in
278 #   a) Class C ;
279 # b) ABP Mode ;
280 # c) AT+Mod=1
281 # 2. LPS8,
282 #   a) Firmware version >
283 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
284 #   c) Lorawan server choose built-in
285 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
286 #
287 # How it works?
288 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
289 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
290 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
291 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
292 #   ( The purpose of this step is to show that the Device2 has already do the change there).
293 #
294 #  For example: If current status of Device1 and Device2 leds shows:
295 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
296 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
297 #
298 #  Step2  will cause below change:
299 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
300 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
301
302 #  Step3 will cause below change:
303 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
304 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
305 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
306 #  whether the Device 2 has been changed.//
307 )))
308
309
310 **~1. Input keys**
311
312 [[image:image-20220527162450-3.png]]
313
314 Input Keys in LPS8
315
316
317 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
318
319
320 **3. Choose Built-in server**
321
322 [[image:image-20220527162518-4.png]]
323
324 Choose Built-in server
325
326
327 **4. Run the script.**
328
329 [[image:image-20220527162552-5.png]]
330
331 Run the script
332
333
334 **5. Output:**
335
336 [[image:image-20220527162619-6.png]]
337
338 Output from LPS8
339
340
341 = 4. Example 2: Communicate to TCP Server =
342
343
344 [[image:image-20220527162648-7.png]]
345
346 Network Structure
347
348
349 Full instruction video inlcude how to write scripts to fit server needed is here:
350
351
352 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
353
354
355 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
356
357
358 Assume we already set up ABP keys in the gateway:
359
360 [[image:image-20220527162852-8.png]]
361
362 Input Keys in LPS8
363
364
365
366 **run socket tool in PC**
367
368 [[image:image-20220527163028-9.png]]
369
370
371 Socket tool
372
373
374
375 **Input Server address and port**
376
377 [[image:image-20220527163106-10.png]]
378
379 Input Server address and port
380
381
382
383 **See value receive in socket tool:**
384
385 [[image:image-20220527163144-11.png]]
386
387 value receive in socket tool
388
389
390 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.