Version 57.27 by Xiaoling on 2022/07/14 10:18

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8
9
10 = **1. Introduction** =
11
12
13 This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
14
15
16 == **1.1 Example 1: Connect to Leak relay and VFD** ==
17
18
19 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
20
21 [[image:image-20220527091852-1.png]]
22
23 Connection
24
25
26
27 [[image:image-20220527091942-2.png]](% style="display:none" %)
28
29 Connection
30
31
32 (% style="color:blue" %)**Related documents:**
33
34 * System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||style="background-color: rgb(255, 255, 255);"]]
35 * Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||style="background-color: rgb(255, 255, 255);"]]
36 * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
37
38
39 == **1.2 Example 2: Connect to Pulse Counter** ==
40
41
42 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
43
44
45 [[image:image-20220527092058-3.png]]
46
47 Connection
48
49
50
51 [[image:image-20220527092146-4.png]]
52
53 Connection
54
55
56 (% style="color:blue" %)**Related documents:**
57
58 * Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]]
59 * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
60
61
62 == **1.3 Example3: Use RS485-LN with energy meters** ==
63
64
65 === **1.3.1 OverView** ===
66
67
68 (((
69 (% style="color:red" %)**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications.
70 )))
71
72 (((
73 This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
74 )))
75
76 [[image:image-20220527092419-5.png]]
77
78 Connection1
79
80
81
82 (((
83 (% style="color:blue" %)**How to connect with Energy Meter:**
84
85
86 )))
87
88 (((
89 Follow the instructions of the electric energy meter to connect the phase line and the neutral line, and then connect 485A+ and 485B- to RS485A and RA485B of RS485-LN respectively.
90 )))
91
92 (((
93 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
94 )))
95
96 (((
97 Power Source VIN to RS485-LN VIN+
98 )))
99
100 (((
101 Power Source GND to RS485-LN VIN-
102 )))
103
104 (((
105 Once there is power, the RS485-LN will be on.
106 )))
107
108 [[image:image-20220527092514-6.png]]
109
110 Connection2
111
112
113 [[image:image-20220527092555-7.png]]
114
115 Connection3
116
117
118
119 === **1.3.2 How to use the parameters of the energy meter and MODBUS commands** ===
120
121
122 If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
123
124 [[image:image-20220601143257-10.png]]
125
126
127 (% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
128
129 * The first byte : slave address code (=001~247)
130 * The second byte : read register value function code
131 * 3rd and 4th bytes: start address of register to be read
132 * 5th and 6th bytes: Number of registers to read
133 * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
134
135 (((
136
137
138
139 How to parse the reading of the return command of the parameter:
140
141 (% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
142 )))
143
144 * The first byte ARD: slave address code (=001~254)
145 * The second byte: Return to read function code
146 * 3rd byte: total number of bytes
147 * 4th~5th bytes: register data
148 * The 6th and 7th bytes: CRC16 checksum
149 * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage.
150
151 (% class="wikigeneratedid" %)
152 (((
153
154
155
156
157 )))
158
159 === **1.3.3 How to configure RS485-LN and parse output commands** ===
160
161
162 RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
163
164
165
166 ==== **1.3.3.1 via AT COMMAND** ====
167
168
169 First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
170
171 (((
172 If the configured parameters and commands are incorrect, the return value is not obtained.
173 )))
174
175 [[image:image-20220601143201-9.png]]
176
177 AT COMMAND
178
179
180 (% class="box infomessage" %)
181 (((
182 **AT+DATACUTx **:  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
183 )))
184
185 a:  length for the return of AT+COMMAND
186
187 b: 1: grab valid value by byte, max 6 bytes;  2: grab valid value by bytes section, max 3 sections.
188
189 c:  define the position for valid value.
190
191 [[image:image-20220601143115-8.png]]
192
193 AT COMMAND
194
195
196
197 PAYLOAD is available after the valid value is intercepted.
198
199
200 [[image:image-20220601143046-7.png]]
201
202 AT COMMAND
203
204
205
206 You can get configured PAYLOAD on TTN.
207
208 [[image:image-20220601143519-1.png]]
209
210 (((
211 AT COMMAND
212 )))
213
214 (((
215
216 )))
217
218 (((
219 (% style="color:blue" %)**Example**:
220
221 (% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
222 )))
223
224 (((
225 RETURN1: 01 03 02 00 02 39 85 00 00(return data)
226 )))
227
228 (((
229 AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
230
231
232 )))
233
234 (((
235 (% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
236 )))
237
238 (((
239 RETURN2: 01 03 02 08 DC BE 1D(return data)
240 )))
241
242 (((
243 AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
244
245
246 )))
247
248 (((
249 (% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
250 )))
251
252 (((
253 RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
254 )))
255
256 (((
257 AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
258 )))
259
260 (((
261 Payload: 01 00 02 39 85 08 DC 00 00 00 44
262 )))
263
264 [[image:image-20220601142936-6.png]]
265
266 AT COMMAND
267
268
269 (% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
270
271
272 [[image:image-20220601143642-2.png]]
273
274 AT COMMAND
275
276
277
278 ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
279
280
281 [[image:image-20220527093358-15.png]]
282
283 (((
284 DOWNLINK
285 )))
286
287 (((
288
289 )))
290
291 (((
292 (% style="color:#4f81bd" %)**Type Code 0xAF**
293 )))
294
295 (((
296 (% class="box infomessage" %)
297 (((
298 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
299 )))
300 )))
301
302 (((
303 (% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
304 )))
305
306 (((
307 Format: AF MM NN LL XX XX XX XX YY
308 )))
309
310 (((
311 Where:
312 )))
313
314 (((
315 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
316 )))
317
318 (((
319 NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
320 )))
321
322 (((
323 LL: The length of AT+COMMAND or AT+DATACUT command
324 )))
325
326 (((
327 XX XX XX XX: AT+COMMAND or AT+DATACUT command
328 )))
329
330 (((
331 YY: If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN
332 )))
333
334 (((
335 will execute an uplink after got this command.
336 )))
337
338 (((
339
340
341 (% style="color:blue" %)**Example:**
342 )))
343
344 (((
345 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
346 )))
347
348 [[image:image-20220601144149-6.png]]
349
350 DOWNLINK
351
352
353
354 [[image:image-20220601143803-3.png]]
355
356 DOWNLINK
357
358
359
360 [[image:image-20220601144053-5.png]]
361
362 DOWNLINK
363
364
365
366 [[image:image-20220601143921-4.png]]
367
368 DOWNLINK
369
370
371
372 [[image:image-20220601142805-5.png]]
373
374 DOWNLINK
375
376
377
378 === **1.3.4 How to configure and output commands for RS485 to USB** ===
379
380 (((
381 This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
382 )))
383
384 (((
385 First, connect the A+ and A- of the USB to the 485 A and 485 B of the energy meter.
386 )))
387
388 (((
389 Open the serial port debugging, set the send and receive to HEX.
390 )))
391
392 (((
393 Baud rate: 9600
394 )))
395
396 (((
397 check digit: Even
398
399
400 )))
401
402 [[image:image-20220527093708-21.png]]
403
404 USB
405
406
407
408 [[image:image-20220527093747-22.png]]
409
410 USB
411
412
413
414 (((
415 The configuration command is consistent with the AT command, input the hexadecimal command directly into the serial port, and the serial port will output the command.
416
417
418 )))
419
420 (((
421 (% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
422 )))
423
424 (((
425 output:01 03 04 00 00 00 42 7A 02
426
427
428 )))
429
430 [[image:image-20220527093821-23.png]]
431
432 USB
433
434
435
436 === **1.3.5 How to configure multiple devices and modify device addresses** ===
437
438
439 If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
440
441 (((
442 (((
443 Set the device address according to the parameters in the appendix of the MODBUS communication protocol.
444 )))
445 )))
446
447 [[image:image-20220601142044-1.png]]
448
449
450 (% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
451
452 [[image:image-20220527093950-25.png]]
453
454
455 [[image:image-20220527094028-26.png]]
456
457
458 (((
459 (((
460 First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
461 )))
462 )))
463
464 (((
465 (((
466 We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
467 )))
468 )))
469
470 (((
471 (((
472 We modify the device address 01 of the first energy meter to 02.
473 )))
474 )))
475
476 [[image:image-20220601142354-2.png]]
477
478
479 (% class="box infomessage" %)
480 (((
481 **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
482 )))
483
484 * 01:device adaress
485
486 * 10:function code
487
488 * 00 61:Register address
489
490 * 00 01:Number of Registers
491
492 * 02:Number of bytes
493
494 * 00 02:Modified device address
495
496 * 1:Check code
497
498 The device address setting of the energy meter is complete.
499
500 Another energy meter is a single active energy meter with a floating-point format.
501
502 Its default device address is 01, and the following are the parameters for configuring two energy meters.
503
504 [[image:image-20220601142452-3.png]]
505
506
507 [[image:image-20220601142607-4.png]]
508
509
510 (% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
511
512 * 08 DF is the valid value of the meter with device address 02.
513 * 43 62 is the valid value of the meter with device address 01.
514
515
516
517 == 1.4 Example 4: Circuit Breaker Remote Open Close ==
518
519
520 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
521
522 The structure is like below:
523
524 [[image:image-20220527094330-30.png]]
525
526 Connection
527
528
529 * Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]]
530
531
532
533 == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
534
535
536 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
537
538 * Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||style="background-color: rgb(255, 255, 255);"]]
539 * Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf]]
540
541
542
543 == 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
544
545
546 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
547
548 * Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||style="background-color: rgb(255, 255, 255);"]]
549
550
551
552 == 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
553
554
555 [[image:image-20220527094556-31.png]]
556
557 Network Structure
558
559
560 * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]