<
From version < 61.1 >
edited by Bei Jinggeng
on 2023/08/08 15:16
To version < 57.6 >
edited by Xiaoling
on 2022/07/14 09:16
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -1,4 +1,5 @@
1 -**Table of Contents:**
1 +(% class="wikigeneratedid" %)
2 + ** Table of** **Contents:**
2 2  
3 3  {{toc/}}
4 4  
... ... @@ -7,87 +7,77 @@
7 7  
8 8  
9 9  
10 -= 1. Introduction =
11 += **1. Introduction** =
11 11  
12 12  
13 13  This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
14 14  
15 15  
16 -== 1.1 Example 1: Connect to Leak relay and VFD ==
17 +== **1.1 Example 1: Connect to Leak relay and VFD** ==
17 17  
18 18  
19 19  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
20 20  
22 +[[image:image-20220527091852-1.png]]
21 21  
22 -[[image:image-20220527091852-1.png||height="547" width="994"]]
24 +Connection
23 23  
24 -**Connection**
25 25  
26 26  
27 -
28 28  [[image:image-20220527091942-2.png]](% style="display:none" %)
29 29  
30 -**Connection**
30 +Connection
31 31  
32 32  
33 -(% style="color:blue" %)**Related documents:**
33 +Related documents:
34 34  
35 -* System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
36 -
37 -* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
38 -
35 +* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure
36 +* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code.
39 39  * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
40 40  
41 41  
42 -== 1.2 Example 2: Connect to Pulse Counter ==
43 43  
44 44  
42 +== **1.2 Example 2: Connect to Pulse Counter** ==
43 +
45 45  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
46 46  
46 +[[image:image-20220527092058-3.png]]
47 47  
48 -[[image:image-20220527092058-3.png||height="552" width="905"]]
48 +Connection
49 49  
50 -**Connection**
51 51  
52 52  
52 +[[image:image-20220527092146-4.png]]
53 53  
54 -[[image:image-20220527092146-4.png||height="507" width="906"]]
54 +Connection
55 55  
56 -**Connection**
57 57  
58 -
59 -(% style="color:blue" %)**Related documents:**
60 -
61 -* Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]]
62 -
57 +* [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] : Configure Document
63 63  * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
64 64  
60 +== ==
65 65  
66 -== 1.3 Example 3: Use RS485-LN with energy meters ==
62 +== **1.3 Example3: Use RS485-LN with energy meters** ==
67 67  
68 -=== 1.3.1 OverView ===
64 +=== **1.3.1 OverView** ===
69 69  
70 -
71 71  (((
72 -(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.**
67 +**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications.
73 73  )))
74 74  
75 75  (((
76 76  This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
77 -
78 -
79 79  )))
80 80  
81 81  [[image:image-20220527092419-5.png]]
82 82  
83 -**Connection1**
76 +Connection1
84 84  
85 85  
86 86  
87 87  (((
88 -(% style="color:blue" %)**How to connect with Energy Meter:**
89 -
90 -
81 +How to connect with Energy Meter:
91 91  )))
92 92  
93 93  (((
... ... @@ -99,97 +99,88 @@
99 99  )))
100 100  
101 101  (((
102 -Power Source **VIN** to RS485-LN **VIN+**
93 +Power Source VIN to RS485-LN VIN+
103 103  )))
104 104  
105 105  (((
106 -Power Source **GND** to RS485-LN **VIN-**
97 +Power Source GND to RS485-LN VIN-
107 107  )))
108 108  
109 109  (((
110 110  Once there is power, the RS485-LN will be on.
111 -
112 -
113 113  )))
114 114  
115 115  [[image:image-20220527092514-6.png]]
116 116  
117 -**Connection2**
106 +Connection2
118 118  
119 119  
120 120  
121 121  [[image:image-20220527092555-7.png]]
122 122  
123 -**Connection3**
112 +Connection3
124 124  
125 125  
126 -=== 1.3.2 How to use the parameters of the energy meter and MODBUS commands ===
115 +=== **1.3.2 How to use the parameters of the energy meter and MODBUS commands** ===
127 127  
128 -
129 129  If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
130 130  
131 131  [[image:image-20220601143257-10.png]]
132 132  
133 133  
134 -(% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
122 +(% class="box infomessage" %)
123 +(((
124 +**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A
125 +)))
135 135  
136 136  * The first byte : slave address code (=001~247)
137 -
138 138  * The second byte : read register value function code
139 -
140 140  * 3rd and 4th bytes: start address of register to be read
141 -
142 142  * 5th and 6th bytes: Number of registers to read
143 -
144 144  * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
145 145  
146 146  (((
147 -
148 -
149 -
150 150  How to parse the reading of the return command of the parameter:
135 +)))
151 151  
152 -(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
137 +(% class="box infomessage" %)
138 +(((
139 +**Example:** RETURN1:01 03 02 08 FD 7E 05
153 153  )))
154 154  
155 155  * The first byte ARD: slave address code (=001~254)
156 -
157 157  * The second byte: Return to read function code
158 -
159 159  * 3rd byte: total number of bytes
160 -
161 161  * 4th~5th bytes: register data
162 -
163 163  * The 6th and 7th bytes: CRC16 checksum
164 -
165 165  * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage.
166 166  
149 +(% class="wikigeneratedid" %)
150 +(((
151 +
152 +)))
167 167  
168 -=== 1.3.3 How to configure RS485-LN and parse output commands ===
154 +=== **1.3.3 How to configure RS485-LN and parse output commands** ===
169 169  
170 -
171 171  RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
172 172  
173 173  
174 -==== **1.3.3.1 via AT COMMAND** ====
159 +==== **1.3.3.1 via AT COMMAND:** ====
175 175  
161 +First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct.
176 176  
177 -First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
178 -
179 179  (((
180 180  If the configured parameters and commands are incorrect, the return value is not obtained.
181 -
182 -
183 183  )))
184 184  
185 185  [[image:image-20220601143201-9.png]]
186 186  
187 -**AT COMMAND**
169 +AT COMMAND
188 188  
189 189  
190 190  (% class="box infomessage" %)
191 191  (((
192 - (% _mstmutation="1" %)**AT+DATACUTx **(%%):  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
174 + AT+DATACUTx : This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
193 193  )))
194 194  
195 195  a:  length for the return of AT+COMMAND
... ... @@ -200,15 +200,16 @@
200 200  
201 201  [[image:image-20220601143115-8.png]]
202 202  
203 -**AT COMMAND**
185 +AT COMMAND
204 204  
205 205  
206 206  
207 207  PAYLOAD is available after the valid value is intercepted.
208 208  
191 +
209 209  [[image:image-20220601143046-7.png]]
210 210  
211 -**AT COMMAND**
194 +AT COMMAND
212 212  
213 213  
214 214  
... ... @@ -217,7 +217,7 @@
217 217  [[image:image-20220601143519-1.png]]
218 218  
219 219  (((
220 -**AT COMMAND**
203 +AT COMMAND
221 221  )))
222 222  
223 223  (((
... ... @@ -225,49 +225,49 @@
225 225  )))
226 226  
227 227  (((
228 -(% style="color:blue" %)**Example**:
211 +(% style="color:#4f81bd" %)**Example**:
229 229  
230 -(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
213 +CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1
231 231  )))
232 232  
233 233  (((
234 -RETURN1: 01 03 02 00 02 39 85 00 00(return data)
217 +RETURN1:01 03 02 00 02 39 85 00 00(return data)
235 235  )))
236 236  
237 237  (((
238 -AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
221 +AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
239 239  
240 240  
241 241  )))
242 242  
243 243  (((
244 -(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
227 +CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1
245 245  )))
246 246  
247 247  (((
248 -RETURN2: 01 03 02 08 DC BE 1D(return data)
231 +RETURN2:01 03 02 08 DC BE 1D(return data)
249 249  )))
250 250  
251 251  (((
252 -AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
235 +AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
253 253  
254 254  
255 255  )))
256 256  
257 257  (((
258 -(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
241 +CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
259 259  )))
260 260  
261 261  (((
262 -RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
245 +RETURN3:01 03 04 00 00 00 44 FA 00(return data)
263 263  )))
264 264  
265 265  (((
266 -AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
249 +AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
267 267  )))
268 268  
269 269  (((
270 -Payload: 01 00 02 39 85 08 DC 00 00 00 44
253 +Payload:01 00 02 39 85 08 DC 00 00 00 44
271 271  )))
272 272  
273 273  [[image:image-20220601142936-6.png]]
... ... @@ -275,8 +275,8 @@
275 275  AT COMMAND
276 276  
277 277  
261 +(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
278 278  
279 -(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
280 280  
281 281  
282 282  [[image:image-20220601143642-2.png]]
... ... @@ -284,20 +284,20 @@
284 284  AT COMMAND
285 285  
286 286  
287 -
288 288  ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
289 289  
290 -
291 291  [[image:image-20220527093358-15.png]]
292 292  
293 293  (((
294 -**DOWNLINK**
275 +DOWNLINK
295 295  )))
296 296  
278 +(((
279 +
280 +)))
297 297  
298 -
299 299  (((
300 -(% style="color:blue" %)**Type Code 0xAF**
283 +(% style="color:#4f81bd" %)**Type Code 0xAF**
301 301  )))
302 302  
303 303  (((
... ... @@ -308,7 +308,7 @@
308 308  )))
309 309  
310 310  (((
311 -(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
294 +Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
312 312  )))
313 313  
314 314  (((
... ... @@ -343,9 +343,10 @@
343 343  will execute an uplink after got this command.
344 344  )))
345 345  
346 -
347 347  (((
348 -(% style="color:blue" %)**Example:**
330 +
331 +
332 +(% style="color:#4f81bd" %)**Example:**
349 349  )))
350 350  
351 351  (((
... ... @@ -354,36 +354,35 @@
354 354  
355 355  [[image:image-20220601144149-6.png]]
356 356  
357 -**DOWNLINK**
341 +DOWNLINK
358 358  
359 359  
360 360  
361 361  [[image:image-20220601143803-3.png]]
362 362  
363 -**DOWNLINK**
347 +DOWNLINK
364 364  
365 365  
366 366  
367 367  [[image:image-20220601144053-5.png]]
368 368  
369 -**DOWNLINK**
353 +DOWNLINK
370 370  
371 371  
372 372  
373 373  [[image:image-20220601143921-4.png]]
374 374  
375 -**DOWNLINK**
359 +DOWNLINK
376 376  
377 377  
378 378  
379 379  [[image:image-20220601142805-5.png]]
380 380  
381 -**DOWNLINK**
365 +DOWNLINK
366 +
382 382  
368 +=== **1.3.4 How to configure and output commands for RS485 to USB** ===
383 383  
384 -=== 1.3.4 How to configure and output commands for RS485 to USB ===
385 -
386 -
387 387  (((
388 388  This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
389 389  )))
... ... @@ -402,19 +402,17 @@
402 402  
403 403  (((
404 404  check digit: Even
405 -
406 -
407 407  )))
408 408  
409 409  [[image:image-20220527093708-21.png]]
410 410  
411 -**USB**
392 +USB
412 412  
413 413  
414 414  
415 415  [[image:image-20220527093747-22.png]]
416 416  
417 -**USB**
398 +USB
418 418  
419 419  
420 420  
... ... @@ -423,24 +423,20 @@
423 423  )))
424 424  
425 425  (((
426 -(% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
407 +(% style="color:#4f81bd" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
427 427  )))
428 428  
429 429  (((
430 430   output:01 03 04 00 00 00 42 7A 02
431 -
432 -
433 433  )))
434 434  
435 435  [[image:image-20220527093821-23.png]]
436 436  
437 -**USB**
416 +USB
438 438  
439 439  
419 +=== **1.3.5 How to configure multiple devices and modify device addresses** ===
440 440  
441 -=== 1.3.5 How to configure multiple devices and modify device addresses ===
442 -
443 -
444 444  If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
445 445  
446 446  (((
... ... @@ -452,15 +452,13 @@
452 452  [[image:image-20220601142044-1.png]]
453 453  
454 454  
455 -(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
432 +**Example**:These two meters are examples of setting parameters and device addresses.
456 456  
457 -
458 458  [[image:image-20220527093950-25.png]]
459 459  
460 460  
461 461  [[image:image-20220527094028-26.png]]
462 462  
463 -
464 464  (((
465 465  (((
466 466  First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
... ... @@ -469,7 +469,7 @@
469 469  
470 470  (((
471 471  (((
472 -We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
447 +We can use AT+CFGDEV to set the device address.
473 473  )))
474 474  )))
475 475  
... ... @@ -481,15 +481,14 @@
481 481  
482 482  [[image:image-20220601142354-2.png]]
483 483  
484 -
485 485  (% class="box infomessage" %)
486 486  (((
487 487  **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
488 488  )))
489 489  
490 -* 01: device adaress
464 +* 01:device adaress
491 491  
492 -* 10: function code
466 +* 10:function code
493 493  
494 494  * 00 61:Register address
495 495  
... ... @@ -512,68 +512,40 @@
512 512  
513 513  [[image:image-20220601142607-4.png]]
514 514  
489 +**PAYLOAD:01 08 DF 43 62**
515 515  
516 -(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
517 -
518 518  * 08 DF is the valid value of the meter with device address 02.
519 519  * 43 62 is the valid value of the meter with device address 01.
520 520  
521 -(% style="display:none" %) (%%)
522 522  
523 -
524 524  == 1.4 Example 4: Circuit Breaker Remote Open Close ==
525 525  
497 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below:
526 526  
527 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
528 -
529 -The structure is like below:
530 -
531 531  [[image:image-20220527094330-30.png]]
532 532  
533 -**Connection**
501 +Connection
534 534  
503 +* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen
535 535  
536 -* Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]]
537 -
538 -
539 539  == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
540 540  
541 -
542 542  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
543 543  
544 -* Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
509 +* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf]] : Configure Document For RS485-BL
545 545  
546 -* Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]]
511 +* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf]] : Configure Document for RS485-LN
547 547  
513 +== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN ==
548 548  
549 -== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
550 -
551 -
552 552  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
553 553  
554 -* Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
517 +* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf]] : Configure Document For RS485-LN
555 555  
519 +== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL ==
556 556  
557 -== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
558 -
559 -
560 560  [[image:image-20220527094556-31.png]]
561 561  
562 -
563 563  Network Structure
564 564  
565 565  * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]
566 -
567 -== ==
568 -
569 -== 1.8  Example 8: This sketch is supposed to test Dragino RS485-BL (Modbus master), using an Arduino UNO as a Modbus slave. ==
570 -
571 -This sketch uses 4 registers: some of them can be set by Dragino with a command, another is used to store value from a DS18B20 temperature sensor, or a random generated number. All data is 16bit uint, but the sketch shows also how to represent booleans and negative numbers.
572 -
573 -In the next days I will be adding more documentation, but I think it already explains users how to build their own modbus sensor to pair with Dragino RS485-BL.
574 -
575 -This is released the code under GNU LGPL licence on Github:
576 -
577 -[[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485]]
578 -
579 -
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0