<
From version < 60.7 >
edited by Xiaoling
on 2022/09/19 16:08
To version < 57.1 >
edited by Xiaoling
on 2022/06/01 14:41
>
Change comment: Uploaded new attachment "image-20220601144149-6.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -1,4 +1,5 @@
1 -**Table of Contents:**
1 +(% class="wikigeneratedid" %)
2 + **Contents:**
2 2  
3 3  {{toc/}}
4 4  
... ... @@ -9,17 +9,13 @@
9 9  
10 10  = **1. Introduction** =
11 11  
12 -
13 13  This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
14 14  
15 15  
16 -
17 17  == **1.1 Example 1: Connect to Leak relay and VFD** ==
18 18  
19 -
20 20  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
21 21  
22 -
23 23  [[image:image-20220527091852-1.png]]
24 24  
25 25  Connection
... ... @@ -31,21 +31,17 @@
31 31  Connection
32 32  
33 33  
34 -(% style="color:blue" %)**Related documents:**
31 +Related documents:
35 35  
36 -* System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
37 -* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
33 +* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure
34 +* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code.
38 38  * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
39 39  
40 40  
41 -
42 -
43 43  == **1.2 Example 2: Connect to Pulse Counter** ==
44 44  
45 -
46 46  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
47 47  
48 -
49 49  [[image:image-20220527092058-3.png]]
50 50  
51 51  Connection
... ... @@ -57,28 +57,21 @@
57 57  Connection
58 58  
59 59  
60 -(% style="color:blue" %)**Related documents:**
61 -
62 -* Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]]
53 +* [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] : Configure Document
63 63  * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
64 64  
56 +== ==
65 65  
66 -
67 -
68 68  == **1.3 Example3: Use RS485-LN with energy meters** ==
69 69  
70 -
71 71  === **1.3.1 OverView** ===
72 72  
73 -
74 74  (((
75 -(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.**
63 +**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications.
76 76  )))
77 77  
78 78  (((
79 79  This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
80 -
81 -
82 82  )))
83 83  
84 84  [[image:image-20220527092419-5.png]]
... ... @@ -88,9 +88,7 @@
88 88  
89 89  
90 90  (((
91 -(% style="color:blue" %)**How to connect with Energy Meter:**
92 -
93 -
77 +How to connect with Energy Meter:
94 94  )))
95 95  
96 96  (((
... ... @@ -111,8 +111,6 @@
111 111  
112 112  (((
113 113  Once there is power, the RS485-LN will be on.
114 -
115 -
116 116  )))
117 117  
118 118  [[image:image-20220527092514-6.png]]
... ... @@ -126,16 +126,17 @@
126 126  Connection3
127 127  
128 128  
129 -
130 130  === **1.3.2 How to use the parameters of the energy meter and MODBUS commands** ===
131 131  
132 -
133 133  If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
134 134  
135 135  [[image:image-20220601143257-10.png]]
136 136  
137 137  
138 -(% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
118 +(% class="box infomessage" %)
119 +(((
120 +**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A
121 +)))
139 139  
140 140  * The first byte : slave address code (=001~247)
141 141  * The second byte : read register value function code
... ... @@ -144,12 +144,12 @@
144 144  * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
145 145  
146 146  (((
147 -
148 -
149 -
150 150  How to parse the reading of the return command of the parameter:
131 +)))
151 151  
152 -(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
133 +(% class="box infomessage" %)
134 +(((
135 +**Example:** RETURN1:01 03 02 08 FD 7E 05
153 153  )))
154 154  
155 155  * The first byte ARD: slave address code (=001~254)
... ... @@ -162,27 +162,19 @@
162 162  (% class="wikigeneratedid" %)
163 163  (((
164 164  
165 -
166 -
167 -
168 168  )))
169 169  
170 170  === **1.3.3 How to configure RS485-LN and parse output commands** ===
171 171  
172 -
173 173  RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
174 174  
175 175  
155 +==== **1.3.3.1 via AT COMMAND:** ====
176 176  
177 -==== **1.3.3.1 via AT COMMAND** ====
157 +First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct.
178 178  
179 -
180 -First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
181 -
182 182  (((
183 183  If the configured parameters and commands are incorrect, the return value is not obtained.
184 -
185 -
186 186  )))
187 187  
188 188  [[image:image-20220601143201-9.png]]
... ... @@ -192,7 +192,7 @@
192 192  
193 193  (% class="box infomessage" %)
194 194  (((
195 - (% _mstmutation="1" %)**AT+DATACUTx **(%%):  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
170 + AT+DATACUTx : This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
196 196  )))
197 197  
198 198  a:  length for the return of AT+COMMAND
... ... @@ -226,57 +226,52 @@
226 226  
227 227  (((
228 228  
229 -
230 -
231 231  )))
232 232  
233 233  (((
234 -(% style="color:blue" %)**Example**:
207 +(% style="color:#4f81bd" %)**Example**:
235 235  
236 -
237 -(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
209 +CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1
238 238  )))
239 239  
240 240  (((
241 -RETURN1: 01 03 02 00 02 39 85 00 00(return data)
213 +RETURN1:01 03 02 00 02 39 85 00 00(return data)
242 242  )))
243 243  
244 244  (((
245 -AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
217 +AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
246 246  
247 247  
248 248  )))
249 249  
250 250  (((
251 -(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
223 +CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1
252 252  )))
253 253  
254 254  (((
255 -RETURN2: 01 03 02 08 DC BE 1D(return data)
227 +RETURN2:01 03 02 08 DC BE 1D(return data)
256 256  )))
257 257  
258 258  (((
259 -AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
231 +AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
260 260  
261 261  
262 262  )))
263 263  
264 264  (((
265 -(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
237 +CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
266 266  )))
267 267  
268 268  (((
269 -RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
241 +RETURN3:01 03 04 00 00 00 44 FA 00(return data)
270 270  )))
271 271  
272 272  (((
273 -AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
245 +AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
274 274  )))
275 275  
276 276  (((
277 -Payload: 01 00 02 39 85 08 DC 00 00 00 44
278 -
279 -
249 +Payload:01 00 02 39 85 08 DC 00 00 00 44
280 280  )))
281 281  
282 282  [[image:image-20220601142936-6.png]]
... ... @@ -284,8 +284,8 @@
284 284  AT COMMAND
285 285  
286 286  
257 +(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
287 287  
288 -(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
289 289  
290 290  
291 291  [[image:image-20220601143642-2.png]]
... ... @@ -293,10 +293,8 @@
293 293  AT COMMAND
294 294  
295 295  
296 -
297 297  ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
298 298  
299 -
300 300  [[image:image-20220527093358-15.png]]
301 301  
302 302  (((
... ... @@ -308,7 +308,7 @@
308 308  )))
309 309  
310 310  (((
311 -(% style="color:blue" %)**Type Code 0xAF**
279 +(% style="color:#4f81bd" %)**Type Code 0xAF**
312 312  )))
313 313  
314 314  (((
... ... @@ -319,9 +319,7 @@
319 319  )))
320 320  
321 321  (((
322 -(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
323 -
324 -
290 +Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
325 325  )))
326 326  
327 327  (((
... ... @@ -359,7 +359,7 @@
359 359  (((
360 360  
361 361  
362 -(% style="color:blue" %)**Example:**
328 +(% style="color:#4f81bd" %)**Example:**
363 363  )))
364 364  
365 365  (((
... ... @@ -366,7 +366,7 @@
366 366  **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
367 367  )))
368 368  
369 -[[image:image-20220601144149-6.png]]
335 +[[image:image-20220527093430-16.png]]
370 370  
371 371  DOWNLINK
372 372  
... ... @@ -378,7 +378,7 @@
378 378  
379 379  
380 380  
381 -[[image:image-20220601144053-5.png]]
347 +[[image:image-20220527093530-18.png]]
382 382  
383 383  DOWNLINK
384 384  
... ... @@ -395,10 +395,8 @@
395 395  DOWNLINK
396 396  
397 397  
398 -
399 399  === **1.3.4 How to configure and output commands for RS485 to USB** ===
400 400  
401 -
402 402  (((
403 403  This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
404 404  )))
... ... @@ -417,8 +417,6 @@
417 417  
418 418  (((
419 419  check digit: Even
420 -
421 -
422 422  )))
423 423  
424 424  [[image:image-20220527093708-21.png]]
... ... @@ -435,18 +435,14 @@
435 435  
436 436  (((
437 437  The configuration command is consistent with the AT command, input the hexadecimal command directly into the serial port, and the serial port will output the command.
438 -
439 -
440 440  )))
441 441  
442 442  (((
443 -(% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
403 +(% style="color:#4f81bd" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
444 444  )))
445 445  
446 446  (((
447 447   output:01 03 04 00 00 00 42 7A 02
448 -
449 -
450 450  )))
451 451  
452 452  [[image:image-20220527093821-23.png]]
... ... @@ -454,10 +454,8 @@
454 454  USB
455 455  
456 456  
457 -
458 458  === **1.3.5 How to configure multiple devices and modify device addresses** ===
459 459  
460 -
461 461  If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
462 462  
463 463  (((
... ... @@ -469,14 +469,12 @@
469 469  [[image:image-20220601142044-1.png]]
470 470  
471 471  
472 -(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
428 +**Example**:These two meters are examples of setting parameters and device addresses.
473 473  
474 474  [[image:image-20220527093950-25.png]]
475 475  
476 -
477 477  [[image:image-20220527094028-26.png]]
478 478  
479 -
480 480  (((
481 481  (((
482 482  First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
... ... @@ -485,7 +485,7 @@
485 485  
486 486  (((
487 487  (((
488 -We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
442 +We can use AT+CFGDEV to set the device address.
489 489  )))
490 490  )))
491 491  
... ... @@ -497,7 +497,6 @@
497 497  
498 498  [[image:image-20220601142354-2.png]]
499 499  
500 -
501 501  (% class="box infomessage" %)
502 502  (((
503 503  **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
... ... @@ -528,47 +528,41 @@
528 528  
529 529  [[image:image-20220601142607-4.png]]
530 530  
484 +**PAYLOAD:01 08 DF 43 62**
531 531  
532 -(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
533 -
534 534  * 08 DF is the valid value of the meter with device address 02.
535 535  * 43 62 is the valid value of the meter with device address 01.
536 536  
537 537  == 1.4 Example 4: Circuit Breaker Remote Open Close ==
538 538  
491 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below:
539 539  
540 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
541 -
542 -The structure is like below:
543 -
544 544  [[image:image-20220527094330-30.png]]
545 545  
546 546  Connection
547 547  
497 +* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen
548 548  
549 -* Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]]
550 -
551 551  == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
552 552  
553 -
554 554  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
555 555  
556 -* Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
557 -* Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]]
503 +* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf]] : Configure Document For RS485-BL
558 558  
559 -== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
505 +* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf]] : Configure Document for RS485-LN
560 560  
561 561  
508 +== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN ==
509 +
562 562  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
563 563  
564 -* Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
512 +* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf]] : Configure Document For RS485-LN
565 565  
566 -== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
567 567  
515 +== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL ==
568 568  
569 569  [[image:image-20220527094556-31.png]]
570 570  
571 571  Network Structure
572 572  
573 -
574 574  * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0