Last modified by Karry Zhuang on 2024/07/11 11:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% class="wikigeneratedid" %) 2 - ** Table of** **Contents:** 1 +**Table of Contents:** 3 3 4 4 {{toc/}} 5 5 ... ... @@ -8,80 +8,87 @@ 8 8 9 9 10 10 11 -= **1. Introduction**=10 += 1. Introduction = 12 12 13 13 14 14 This article provide the examples for RS485-LN to connect to different type of RS485 sensors. 15 15 16 16 17 -== **1.1 Example 1: Connect to Leak relay and VFD**==16 +== 1.1 Example 1: Connect to Leak relay and VFD == 18 18 19 19 20 20 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below: 21 21 22 -[[image:image-20220527091852-1.png]] 23 23 24 - Connection22 +[[image:image-20220527091852-1.png||height="547" width="994"]] 25 25 24 +**Connection** 26 26 27 27 27 + 28 28 [[image:image-20220527091942-2.png]](% style="display:none" %) 29 29 30 -Connection 30 +**Connection** 31 31 32 32 33 -Related documents: 33 +(% style="color:blue" %)**Related documents:** 34 34 35 -* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure 36 -* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code. 37 -* [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]] 35 +* System Structure: [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 38 38 37 +* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code: [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 39 39 39 +* [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]] 40 40 41 41 42 -== **1.2 Example 2: Connect to Pulse Counter**==42 +== 1.2 Example 2: Connect to Pulse Counter == 43 43 44 44 45 45 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below: 46 46 47 47 48 -[[image:image-20220527092058-3.png]] 48 +[[image:image-20220527092058-3.png||height="552" width="905"]] 49 49 50 -Connection 50 +**Connection** 51 51 52 52 53 53 54 -[[image:image-20220527092146-4.png]] 54 +[[image:image-20220527092146-4.png||height="507" width="906"]] 55 55 56 -Connection 56 +**Connection** 57 57 58 58 59 -* Configure Document: [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] 60 -* [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]] 59 +(% style="color:blue" %)**Related documents:** 61 61 61 +* Configure Document: [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]] 62 62 63 +* [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]] 63 63 64 64 65 -== **1.3 Example3: Use RS485-LN with energy meters**==66 +== 1.3 Example 3: Use RS485-LN with energy meters == 66 66 67 -=== **1.3.1 OverView**===68 +=== 1.3.1 OverView === 68 68 70 + 69 69 ((( 70 -**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications. 72 +(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.** 71 71 ))) 72 72 73 73 ((( 74 74 This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter. 77 + 78 + 75 75 ))) 76 76 77 77 [[image:image-20220527092419-5.png]] 78 78 79 -Connection1 83 +**Connection1** 80 80 81 81 82 82 83 83 ((( 84 -How to connect with Energy Meter: 88 +(% style="color:blue" %)**How to connect with Energy Meter:** 89 + 90 + 85 85 ))) 86 86 87 87 ((( ... ... @@ -93,88 +93,97 @@ 93 93 ))) 94 94 95 95 ((( 96 -Power Source VIN to RS485-LN VIN+ 102 +Power Source **VIN** to RS485-LN **VIN+** 97 97 ))) 98 98 99 99 ((( 100 -Power Source GND to RS485-LN VIN- 106 +Power Source **GND** to RS485-LN **VIN-** 101 101 ))) 102 102 103 103 ((( 104 104 Once there is power, the RS485-LN will be on. 111 + 112 + 105 105 ))) 106 106 107 107 [[image:image-20220527092514-6.png]] 108 108 109 -Connection2 117 +**Connection2** 110 110 111 111 112 112 113 113 [[image:image-20220527092555-7.png]] 114 114 115 -Connection3 123 +**Connection3** 116 116 117 117 118 -=== **1.3.2 How to use the parameters of the energy meter and MODBUS commands**===126 +=== 1.3.2 How to use the parameters of the energy meter and MODBUS commands === 119 119 128 + 120 120 If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter. 121 121 122 122 [[image:image-20220601143257-10.png]] 123 123 124 124 125 -(% class="box infomessage" %) 126 -((( 127 -**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A 128 -))) 134 +(% style="color:blue" %)**Example:**(%%) AT+COMMAND1=01 03 00 00 00 01 84 0A 129 129 130 130 * The first byte : slave address code (=001~247) 137 + 131 131 * The second byte : read register value function code 139 + 132 132 * 3rd and 4th bytes: start address of register to be read 141 + 133 133 * 5th and 6th bytes: Number of registers to read 143 + 134 134 * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6. 135 135 136 136 ((( 147 + 148 + 149 + 137 137 How to parse the reading of the return command of the parameter: 138 -))) 139 139 140 -(% class="box infomessage" %) 141 -((( 142 -**Example:** RETURN1:01 03 02 08 FD 7E 05 152 +(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05 143 143 ))) 144 144 145 145 * The first byte ARD: slave address code (=001~254) 156 + 146 146 * The second byte: Return to read function code 158 + 147 147 * 3rd byte: total number of bytes 160 + 148 148 * 4th~5th bytes: register data 162 + 149 149 * The 6th and 7th bytes: CRC16 checksum 164 + 150 150 * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage. 151 151 152 -(% class="wikigeneratedid" %) 153 -((( 154 - 155 -))) 156 156 157 -=== **1.3.3 How to configure RS485-LN and parse output commands**===168 +=== 1.3.3 How to configure RS485-LN and parse output commands === 158 158 170 + 159 159 RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK. 160 160 161 161 162 -==== **1.3.3.1 via AT COMMAND :** ====174 +==== **1.3.3.1 via AT COMMAND** ==== 163 163 164 -First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct. 165 165 177 +First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct. 178 + 166 166 ((( 167 167 If the configured parameters and commands are incorrect, the return value is not obtained. 181 + 182 + 168 168 ))) 169 169 170 170 [[image:image-20220601143201-9.png]] 171 171 172 -AT COMMAND 187 +**AT COMMAND** 173 173 174 174 175 175 (% class="box infomessage" %) 176 176 ((( 177 - AT+DATACUTx 192 + (% _mstmutation="1" %)**AT+DATACUTx **(%%): This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c 178 178 ))) 179 179 180 180 a: length for the return of AT+COMMAND ... ... @@ -185,16 +185,15 @@ 185 185 186 186 [[image:image-20220601143115-8.png]] 187 187 188 -AT COMMAND 203 +**AT COMMAND** 189 189 190 190 191 191 192 192 PAYLOAD is available after the valid value is intercepted. 193 193 194 - 195 195 [[image:image-20220601143046-7.png]] 196 196 197 -AT COMMAND 211 +**AT COMMAND** 198 198 199 199 200 200 ... ... @@ -203,7 +203,7 @@ 203 203 [[image:image-20220601143519-1.png]] 204 204 205 205 ((( 206 -AT COMMAND 220 +**AT COMMAND** 207 207 ))) 208 208 209 209 ((( ... ... @@ -211,49 +211,49 @@ 211 211 ))) 212 212 213 213 ((( 214 -(% style="color: #4f81bd" %)**Example**:228 +(% style="color:blue" %)**Example**: 215 215 216 -CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1 230 +(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1 217 217 ))) 218 218 219 219 ((( 220 -RETURN1:01 03 02 00 02 39 85 00 00(return data) 234 +RETURN1: 01 03 02 00 02 39 85 00 00(return data) 221 221 ))) 222 222 223 223 ((( 224 -AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload. 238 +AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload. 225 225 226 226 227 227 ))) 228 228 229 229 ((( 230 -CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1 244 +(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1 231 231 ))) 232 232 233 233 ((( 234 -RETURN2:01 03 02 08 DC BE 1D(return data) 248 +RETURN2: 01 03 02 08 DC BE 1D(return data) 235 235 ))) 236 236 237 237 ((( 238 -AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload. 252 +AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload. 239 239 240 240 241 241 ))) 242 242 243 243 ((( 244 -CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1 258 +(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1 245 245 ))) 246 246 247 247 ((( 248 -RETURN3:01 03 04 00 00 00 44 FA 00(return data) 262 +RETURN3: 01 03 04 00 00 00 44 FA 00(return data) 249 249 ))) 250 250 251 251 ((( 252 -AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload. 266 +AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload. 253 253 ))) 254 254 255 255 ((( 256 -Payload:01 00 02 39 85 08 DC 00 00 00 44 270 +Payload: 01 00 02 39 85 08 DC 00 00 00 44 257 257 ))) 258 258 259 259 [[image:image-20220601142936-6.png]] ... ... @@ -261,8 +261,8 @@ 261 261 AT COMMAND 262 262 263 263 264 -(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.** 265 265 279 +(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.** 266 266 267 267 268 268 [[image:image-20220601143642-2.png]] ... ... @@ -270,20 +270,20 @@ 270 270 AT COMMAND 271 271 272 272 287 + 273 273 ==== **1.3.3.2 via LoRaWAN DOWNLINK** ==== 274 274 290 + 275 275 [[image:image-20220527093358-15.png]] 276 276 277 277 ((( 278 -DOWNLINK 294 +**DOWNLINK** 279 279 ))) 280 280 281 -((( 282 - 283 -))) 284 284 298 + 285 285 ((( 286 -(% style="color: #4f81bd" %)**Type Code 0xAF**300 +(% style="color:blue" %)**Type Code 0xAF** 287 287 ))) 288 288 289 289 ((( ... ... @@ -294,7 +294,7 @@ 294 294 ))) 295 295 296 296 ((( 297 -Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink. 311 +(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.** 298 298 ))) 299 299 300 300 ((( ... ... @@ -329,10 +329,9 @@ 329 329 will execute an uplink after got this command. 330 330 ))) 331 331 332 -((( 333 - 334 334 335 -(% style="color:#4f81bd" %)**Example:** 347 +((( 348 +(% style="color:blue" %)**Example:** 336 336 ))) 337 337 338 338 ((( ... ... @@ -341,35 +341,36 @@ 341 341 342 342 [[image:image-20220601144149-6.png]] 343 343 344 -DOWNLINK 357 +**DOWNLINK** 345 345 346 346 347 347 348 348 [[image:image-20220601143803-3.png]] 349 349 350 -DOWNLINK 363 +**DOWNLINK** 351 351 352 352 353 353 354 354 [[image:image-20220601144053-5.png]] 355 355 356 -DOWNLINK 369 +**DOWNLINK** 357 357 358 358 359 359 360 360 [[image:image-20220601143921-4.png]] 361 361 362 -DOWNLINK 375 +**DOWNLINK** 363 363 364 364 365 365 366 366 [[image:image-20220601142805-5.png]] 367 367 368 -DOWNLINK 369 - 381 +**DOWNLINK** 370 370 371 -=== **1.3.4 How to configure and output commands for RS485 to USB** === 372 372 384 +=== 1.3.4 How to configure and output commands for RS485 to USB === 385 + 386 + 373 373 ((( 374 374 This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN. 375 375 ))) ... ... @@ -388,17 +388,19 @@ 388 388 389 389 ((( 390 390 check digit: Even 405 + 406 + 391 391 ))) 392 392 393 393 [[image:image-20220527093708-21.png]] 394 394 395 -USB 411 +**USB** 396 396 397 397 398 398 399 399 [[image:image-20220527093747-22.png]] 400 400 401 -USB 417 +**USB** 402 402 403 403 404 404 ... ... @@ -407,20 +407,24 @@ 407 407 ))) 408 408 409 409 ((( 410 -(% style="color: #4f81bd" %)**Example:** (%%)input:01 03 00 31 00 02 95 c4426 +(% style="color:blue" %)**Example:** (%%)input:01 03 00 31 00 02 95 c4 411 411 ))) 412 412 413 413 ((( 414 414 output:01 03 04 00 00 00 42 7A 02 431 + 432 + 415 415 ))) 416 416 417 417 [[image:image-20220527093821-23.png]] 418 418 419 -USB 437 +**USB** 420 420 421 421 422 -=== **1.3.5 How to configure multiple devices and modify device addresses** === 423 423 441 +=== 1.3.5 How to configure multiple devices and modify device addresses === 442 + 443 + 424 424 If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01. 425 425 426 426 ((( ... ... @@ -432,13 +432,15 @@ 432 432 [[image:image-20220601142044-1.png]] 433 433 434 434 435 -**Example**:These two meters are examples of setting parameters and device addresses. 455 +(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses. 436 436 457 + 437 437 [[image:image-20220527093950-25.png]] 438 438 439 439 440 440 [[image:image-20220527094028-26.png]] 441 441 463 + 442 442 ((( 443 443 ((( 444 444 First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address. ... ... @@ -447,7 +447,7 @@ 447 447 448 448 ((( 449 449 ((( 450 -We can use AT+CFGDEV to set the device address. 472 +We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address. 451 451 ))) 452 452 ))) 453 453 ... ... @@ -459,14 +459,15 @@ 459 459 460 460 [[image:image-20220601142354-2.png]] 461 461 484 + 462 462 (% class="box infomessage" %) 463 463 ((( 464 464 **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1** 465 465 ))) 466 466 467 -* 01:device adaress 490 +* 01: device adaress 468 468 469 -* 10:function code 492 +* 10: function code 470 470 471 471 * 00 61:Register address 472 472 ... ... @@ -489,40 +489,68 @@ 489 489 490 490 [[image:image-20220601142607-4.png]] 491 491 492 -**PAYLOAD:01 08 DF 43 62** 493 493 516 +(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62** 517 + 494 494 * 08 DF is the valid value of the meter with device address 02. 495 495 * 43 62 is the valid value of the meter with device address 01. 496 496 521 +(% style="display:none" %) (%%) 497 497 523 + 498 498 == 1.4 Example 4: Circuit Breaker Remote Open Close == 499 499 500 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below: 501 501 527 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. 528 + 529 +The structure is like below: 530 + 502 502 [[image:image-20220527094330-30.png]] 503 503 504 -Connection 533 +**Connection** 505 505 506 -* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen 507 507 536 +* Configure Documen: [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]] 537 + 538 + 508 508 == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN == 509 509 541 + 510 510 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below: 511 511 512 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf ]] : Configure Document ForRS485-BL544 +* Configure Document For RS485-BL: [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 513 513 514 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf ]] : Configure Documentfor RS485-LN546 +* Configure Document for RS485-LN: [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]] 515 515 516 -== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN == 517 517 549 +== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN == 550 + 551 + 518 518 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below: 519 519 520 -* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf ]] : Configure Document ForRS485-LN554 +* Configure Document For RS485-LN: [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 521 521 522 -== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL == 523 523 557 +== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL == 558 + 559 + 524 524 [[image:image-20220527094556-31.png]] 525 525 562 + 526 526 Network Structure 527 527 528 528 * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]] 566 + 567 +== == 568 + 569 +== 1.8 Example 8: This sketch is supposed to test Dragino RS485-BL (Modbus master), using an Arduino UNO as a Modbus slave. == 570 + 571 +This sketch uses 4 registers: some of them can be set by Dragino with a command, another is used to store value from a DS18B20 temperature sensor, or a random generated number. All data is 16bit uint, but the sketch shows also how to represent booleans and negative numbers. 572 + 573 +In the next days I will be adding more documentation, but I think it already explains users how to build their own modbus sensor to pair with Dragino RS485-BL. 574 + 575 +This is released the code under GNU LGPL licence on Github: 576 + 577 +[[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485]] 578 + 579 +