<
From version < 57.6 >
edited by Xiaoling
on 2022/07/14 09:16
To version < 62.1 >
edited by Bei Jinggeng
on 2023/08/08 15:23
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -1,5 +1,4 @@
1 -(% class="wikigeneratedid" %)
2 - ** Table of** **Contents:**
1 +**Table of Contents:**
3 3  
4 4  {{toc/}}
5 5  
... ... @@ -8,77 +8,85 @@
8 8  
9 9  
10 10  
11 -= **1. Introduction** =
10 += 1. Introduction =
12 12  
13 13  
14 14  This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
15 15  
16 16  
17 -== **1.1 Example 1: Connect to Leak relay and VFD** ==
16 +== 1.1 Example 1: Connect to Leak relay and VFD ==
18 18  
19 19  
20 20  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
21 21  
22 -[[image:image-20220527091852-1.png]]
23 23  
24 -Connection
22 +[[image:image-20220527091852-1.png||height="547" width="994"]]
25 25  
24 +**Connection**
26 26  
27 27  
27 +
28 28  [[image:image-20220527091942-2.png]](% style="display:none" %)
29 29  
30 -Connection
30 +**Connection**
31 31  
32 32  
33 -Related documents:
33 +(% style="color:blue" %)**Related documents:**
34 34  
35 -* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure
36 -* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code.
37 -* [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
35 +* System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
38 38  
37 +* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
39 39  
39 +* [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
40 40  
41 +== 1.2 Example 2: Connect to Pulse Counter ==
41 41  
42 -== **1.2 Example 2: Connect to Pulse Counter** ==
43 43  
44 44  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
45 45  
46 -[[image:image-20220527092058-3.png]]
47 47  
48 -Connection
47 +[[image:image-20220527092058-3.png||height="552" width="905"]]
49 49  
49 +**Connection**
50 50  
51 51  
52 -[[image:image-20220527092146-4.png]]
53 53  
54 -Connection
53 +[[image:image-20220527092146-4.png||height="507" width="906"]]
55 55  
55 +**Connection**
56 56  
57 -* [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] : Configure Document
57 +
58 +(% style="color:blue" %)**Related documents:**
59 +
60 +* Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]]
61 +
58 58  * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
59 59  
60 -== ==
64 +== 1.3 Example 3: Use RS485-LN with energy meters ==
61 61  
62 -== **1.3 Example3: Use RS485-LN with energy meters** ==
66 +=== 1.3.1 OverView ===
63 63  
64 -=== **1.3.1 OverView** ===
65 65  
66 66  (((
67 -**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications.
70 +(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.**
68 68  )))
69 69  
70 70  (((
71 71  This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
75 +
76 +
72 72  )))
73 73  
74 74  [[image:image-20220527092419-5.png]]
75 75  
76 -Connection1
81 +**Connection1**
77 77  
78 78  
79 79  
80 80  (((
81 -How to connect with Energy Meter:
86 +(% style="color:blue" %)**How to connect with Energy Meter:**
87 +
88 +
82 82  )))
83 83  
84 84  (((
... ... @@ -90,88 +90,96 @@
90 90  )))
91 91  
92 92  (((
93 -Power Source VIN to RS485-LN VIN+
100 +Power Source **VIN** to RS485-LN **VIN+**
94 94  )))
95 95  
96 96  (((
97 -Power Source GND to RS485-LN VIN-
104 +Power Source **GND** to RS485-LN **VIN-**
98 98  )))
99 99  
100 100  (((
101 101  Once there is power, the RS485-LN will be on.
109 +
110 +
102 102  )))
103 103  
104 104  [[image:image-20220527092514-6.png]]
105 105  
106 -Connection2
115 +**Connection2**
107 107  
108 108  
109 109  
110 110  [[image:image-20220527092555-7.png]]
111 111  
112 -Connection3
121 +**Connection3**
113 113  
114 114  
115 -=== **1.3.2 How to use the parameters of the energy meter and MODBUS commands** ===
124 +=== 1.3.2 How to use the parameters of the energy meter and MODBUS commands ===
116 116  
126 +
117 117  If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
118 118  
119 119  [[image:image-20220601143257-10.png]]
120 120  
121 121  
122 -(% class="box infomessage" %)
123 -(((
124 -**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A
125 -)))
132 +(% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
126 126  
127 127  * The first byte : slave address code (=001~247)
135 +
128 128  * The second byte : read register value function code
137 +
129 129  * 3rd and 4th bytes: start address of register to be read
139 +
130 130  * 5th and 6th bytes: Number of registers to read
141 +
131 131  * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
132 132  
133 133  (((
145 +
146 +
147 +
134 134  How to parse the reading of the return command of the parameter:
135 -)))
136 136  
137 -(% class="box infomessage" %)
138 -(((
139 -**Example:** RETURN1:01 03 02 08 FD 7E 05
150 +(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
140 140  )))
141 141  
142 142  * The first byte ARD: slave address code (=001~254)
154 +
143 143  * The second byte: Return to read function code
156 +
144 144  * 3rd byte: total number of bytes
158 +
145 145  * 4th~5th bytes: register data
160 +
146 146  * The 6th and 7th bytes: CRC16 checksum
162 +
147 147  * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage.
148 148  
149 -(% class="wikigeneratedid" %)
150 -(((
151 -
152 -)))
165 +=== 1.3.3 How to configure RS485-LN and parse output commands ===
153 153  
154 -=== **1.3.3 How to configure RS485-LN and parse output commands** ===
155 155  
156 156  RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
157 157  
158 158  
159 -==== **1.3.3.1 via AT COMMAND:** ====
171 +==== **1.3.3.1 via AT COMMAND** ====
160 160  
161 -First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct.
162 162  
174 +First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
175 +
163 163  (((
164 164  If the configured parameters and commands are incorrect, the return value is not obtained.
178 +
179 +
165 165  )))
166 166  
167 167  [[image:image-20220601143201-9.png]]
168 168  
169 -AT COMMAND
184 +**AT COMMAND**
170 170  
171 171  
172 172  (% class="box infomessage" %)
173 173  (((
174 - AT+DATACUTx : This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
189 + (% _mstmutation="1" %)**AT+DATACUTx **(%%):  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
175 175  )))
176 176  
177 177  a:  length for the return of AT+COMMAND
... ... @@ -182,16 +182,15 @@
182 182  
183 183  [[image:image-20220601143115-8.png]]
184 184  
185 -AT COMMAND
200 +**AT COMMAND**
186 186  
187 187  
188 188  
189 189  PAYLOAD is available after the valid value is intercepted.
190 190  
191 -
192 192  [[image:image-20220601143046-7.png]]
193 193  
194 -AT COMMAND
208 +**AT COMMAND**
195 195  
196 196  
197 197  
... ... @@ -200,7 +200,7 @@
200 200  [[image:image-20220601143519-1.png]]
201 201  
202 202  (((
203 -AT COMMAND
217 +**AT COMMAND**
204 204  )))
205 205  
206 206  (((
... ... @@ -208,49 +208,49 @@
208 208  )))
209 209  
210 210  (((
211 -(% style="color:#4f81bd" %)**Example**:
225 +(% style="color:blue" %)**Example**:
212 212  
213 -CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1
227 +(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
214 214  )))
215 215  
216 216  (((
217 -RETURN1:01 03 02 00 02 39 85 00 00(return data)
231 +RETURN1: 01 03 02 00 02 39 85 00 00(return data)
218 218  )))
219 219  
220 220  (((
221 -AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
235 +AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
222 222  
223 223  
224 224  )))
225 225  
226 226  (((
227 -CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1
241 +(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
228 228  )))
229 229  
230 230  (((
231 -RETURN2:01 03 02 08 DC BE 1D(return data)
245 +RETURN2: 01 03 02 08 DC BE 1D(return data)
232 232  )))
233 233  
234 234  (((
235 -AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
249 +AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
236 236  
237 237  
238 238  )))
239 239  
240 240  (((
241 -CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
255 +(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
242 242  )))
243 243  
244 244  (((
245 -RETURN3:01 03 04 00 00 00 44 FA 00(return data)
259 +RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
246 246  )))
247 247  
248 248  (((
249 -AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
263 +AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
250 250  )))
251 251  
252 252  (((
253 -Payload:01 00 02 39 85 08 DC 00 00 00 44
267 +Payload: 01 00 02 39 85 08 DC 00 00 00 44
254 254  )))
255 255  
256 256  [[image:image-20220601142936-6.png]]
... ... @@ -258,8 +258,8 @@
258 258  AT COMMAND
259 259  
260 260  
261 -(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
262 262  
276 +(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
263 263  
264 264  
265 265  [[image:image-20220601143642-2.png]]
... ... @@ -267,20 +267,20 @@
267 267  AT COMMAND
268 268  
269 269  
284 +
270 270  ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
271 271  
287 +
272 272  [[image:image-20220527093358-15.png]]
273 273  
274 274  (((
275 -DOWNLINK
291 +**DOWNLINK**
276 276  )))
277 277  
278 -(((
279 -
280 -)))
281 281  
295 +
282 282  (((
283 -(% style="color:#4f81bd" %)**Type Code 0xAF**
297 +(% style="color:blue" %)**Type Code 0xAF**
284 284  )))
285 285  
286 286  (((
... ... @@ -291,7 +291,7 @@
291 291  )))
292 292  
293 293  (((
294 -Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
308 +(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
295 295  )))
296 296  
297 297  (((
... ... @@ -326,10 +326,9 @@
326 326  will execute an uplink after got this command.
327 327  )))
328 328  
329 -(((
330 -
331 331  
332 -(% style="color:#4f81bd" %)**Example:**
344 +(((
345 +(% style="color:blue" %)**Example:**
333 333  )))
334 334  
335 335  (((
... ... @@ -338,35 +338,36 @@
338 338  
339 339  [[image:image-20220601144149-6.png]]
340 340  
341 -DOWNLINK
354 +**DOWNLINK**
342 342  
343 343  
344 344  
345 345  [[image:image-20220601143803-3.png]]
346 346  
347 -DOWNLINK
360 +**DOWNLINK**
348 348  
349 349  
350 350  
351 351  [[image:image-20220601144053-5.png]]
352 352  
353 -DOWNLINK
366 +**DOWNLINK**
354 354  
355 355  
356 356  
357 357  [[image:image-20220601143921-4.png]]
358 358  
359 -DOWNLINK
372 +**DOWNLINK**
360 360  
361 361  
362 362  
363 363  [[image:image-20220601142805-5.png]]
364 364  
365 -DOWNLINK
366 -
378 +**DOWNLINK**
367 367  
368 -=== **1.3.4 How to configure and output commands for RS485 to USB** ===
369 369  
381 +=== 1.3.4 How to configure and output commands for RS485 to USB ===
382 +
383 +
370 370  (((
371 371  This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
372 372  )))
... ... @@ -385,17 +385,19 @@
385 385  
386 386  (((
387 387  check digit: Even
402 +
403 +
388 388  )))
389 389  
390 390  [[image:image-20220527093708-21.png]]
391 391  
392 -USB
408 +**USB**
393 393  
394 394  
395 395  
396 396  [[image:image-20220527093747-22.png]]
397 397  
398 -USB
414 +**USB**
399 399  
400 400  
401 401  
... ... @@ -404,20 +404,24 @@
404 404  )))
405 405  
406 406  (((
407 -(% style="color:#4f81bd" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
423 +(% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
408 408  )))
409 409  
410 410  (((
411 411   output:01 03 04 00 00 00 42 7A 02
428 +
429 +
412 412  )))
413 413  
414 414  [[image:image-20220527093821-23.png]]
415 415  
416 -USB
434 +**USB**
417 417  
418 418  
419 -=== **1.3.5 How to configure multiple devices and modify device addresses** ===
420 420  
438 +=== 1.3.5 How to configure multiple devices and modify device addresses ===
439 +
440 +
421 421  If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
422 422  
423 423  (((
... ... @@ -429,13 +429,15 @@
429 429  [[image:image-20220601142044-1.png]]
430 430  
431 431  
432 -**Example**:These two meters are examples of setting parameters and device addresses.
452 +(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
433 433  
454 +
434 434  [[image:image-20220527093950-25.png]]
435 435  
436 436  
437 437  [[image:image-20220527094028-26.png]]
438 438  
460 +
439 439  (((
440 440  (((
441 441  First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
... ... @@ -444,7 +444,7 @@
444 444  
445 445  (((
446 446  (((
447 -We can use AT+CFGDEV to set the device address.
469 +We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
448 448  )))
449 449  )))
450 450  
... ... @@ -456,14 +456,15 @@
456 456  
457 457  [[image:image-20220601142354-2.png]]
458 458  
481 +
459 459  (% class="box infomessage" %)
460 460  (((
461 461  **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
462 462  )))
463 463  
464 -* 01:device adaress
487 +* 01: device adaress
465 465  
466 -* 10:function code
489 +* 10: function code
467 467  
468 468  * 00 61:Register address
469 469  
... ... @@ -486,40 +486,63 @@
486 486  
487 487  [[image:image-20220601142607-4.png]]
488 488  
489 -**PAYLOAD:01 08 DF 43 62**
490 490  
513 +(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
514 +
491 491  * 08 DF is the valid value of the meter with device address 02.
492 492  * 43 62 is the valid value of the meter with device address 01.
493 493  
518 +(% style="display:none" %) (%%)
494 494  
520 +
495 495  == 1.4 Example 4: Circuit Breaker Remote Open Close ==
496 496  
497 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below:
498 498  
524 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
525 +
526 +The structure is like below:
527 +
499 499  [[image:image-20220527094330-30.png]]
500 500  
501 -Connection
530 +**Connection**
502 502  
503 -* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen
504 504  
533 +* Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]]
534 +
505 505  == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
506 506  
537 +
507 507  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
508 508  
509 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf]] : Configure Document For RS485-BL
540 +* Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
510 510  
511 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf]] : Configure Document for RS485-LN
542 +* Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]]
512 512  
513 -== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN ==
544 +== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
514 514  
546 +
515 515  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
516 516  
517 -* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf]] : Configure Document For RS485-LN
549 +* Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
518 518  
519 -== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL ==
551 +== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
520 520  
553 +
521 521  [[image:image-20220527094556-31.png]]
522 522  
556 +
523 523  Network Structure
524 524  
525 525  * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]
560 +
561 +== 1.8  Example 8: This sketch is supposed to test Dragino RS485-BL (Modbus master), using an Arduino UNO as a Modbus slave. ==
562 +
563 +This sketch uses 4 registers: some of them can be set by Dragino with a command, another is used to store value from a DS18B20 temperature sensor, or a random generated number. All data is 16bit uint, but the sketch shows also how to represent booleans and negative numbers.
564 +
565 +In the next days I will be adding more documentation, but I think it already explains users how to build their own modbus sensor to pair with Dragino RS485-BL.
566 +
567 +This is released the code under GNU LGPL licence on Github:
568 +
569 +[[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485]]
570 +
571 +
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0