Last modified by Karry Zhuang on 2024/07/11 11:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% class="wikigeneratedid" %) 2 - ** Table of** **Contents:** 1 +**Table of Contents:** 3 3 4 4 {{toc/}} 5 5 ... ... @@ -8,77 +8,87 @@ 8 8 9 9 10 10 11 -= **1. Introduction**=10 += 1. Introduction = 12 12 13 13 14 14 This article provide the examples for RS485-LN to connect to different type of RS485 sensors. 15 15 16 16 17 -== **1.1 Example 1: Connect to Leak relay and VFD**==16 +== 1.1 Example 1: Connect to Leak relay and VFD == 18 18 19 19 20 20 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below: 21 21 22 -[[image:image-20220527091852-1.png]] 23 23 24 - Connection22 +[[image:image-20220527091852-1.png||height="547" width="994"]] 25 25 24 +**Connection** 26 26 27 27 27 + 28 28 [[image:image-20220527091942-2.png]](% style="display:none" %) 29 29 30 -Connection 30 +**Connection** 31 31 32 32 33 -Related documents: 33 +(% style="color:blue" %)**Related documents:** 34 34 35 -* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure 36 -* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code. 37 -* [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]] 35 +* System Structure: [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 38 38 37 +* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code: [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 39 39 39 +* [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]] 40 40 41 41 42 -== **1.2 Example 2: Connect to Pulse Counter**==42 +== 1.2 Example 2: Connect to Pulse Counter == 43 43 44 + 44 44 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below: 45 45 46 -[[image:image-20220527092058-3.png]] 47 47 48 - Connection48 +[[image:image-20220527092058-3.png||height="552" width="905"]] 49 49 50 +**Connection** 50 50 51 51 52 -[[image:image-20220527092146-4.png]] 53 53 54 - Connection54 +[[image:image-20220527092146-4.png||height="507" width="906"]] 55 55 56 +**Connection** 56 56 57 -* [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] : Configure Document 58 + 59 +(% style="color:blue" %)**Related documents:** 60 + 61 +* Configure Document: [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]] 62 + 58 58 * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]] 59 59 60 -== == 61 61 62 -== **1.3 Example3: Use RS485-LN with energy meters**==66 +== 1.3 Example 3: Use RS485-LN with energy meters == 63 63 64 -=== **1.3.1 OverView**===68 +=== 1.3.1 OverView === 65 65 70 + 66 66 ((( 67 -**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications. 72 +(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.** 68 68 ))) 69 69 70 70 ((( 71 71 This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter. 77 + 78 + 72 72 ))) 73 73 74 74 [[image:image-20220527092419-5.png]] 75 75 76 -Connection1 83 +**Connection1** 77 77 78 78 79 79 80 80 ((( 81 -How to connect with Energy Meter: 88 +(% style="color:blue" %)**How to connect with Energy Meter:** 89 + 90 + 82 82 ))) 83 83 84 84 ((( ... ... @@ -90,88 +90,97 @@ 90 90 ))) 91 91 92 92 ((( 93 -Power Source VIN to RS485-LN VIN+ 102 +Power Source **VIN** to RS485-LN **VIN+** 94 94 ))) 95 95 96 96 ((( 97 -Power Source GND to RS485-LN VIN- 106 +Power Source **GND** to RS485-LN **VIN-** 98 98 ))) 99 99 100 100 ((( 101 101 Once there is power, the RS485-LN will be on. 111 + 112 + 102 102 ))) 103 103 104 104 [[image:image-20220527092514-6.png]] 105 105 106 -Connection2 117 +**Connection2** 107 107 108 108 109 109 110 110 [[image:image-20220527092555-7.png]] 111 111 112 -Connection3 123 +**Connection3** 113 113 114 114 115 -=== **1.3.2 How to use the parameters of the energy meter and MODBUS commands**===126 +=== 1.3.2 How to use the parameters of the energy meter and MODBUS commands === 116 116 128 + 117 117 If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter. 118 118 119 119 [[image:image-20220601143257-10.png]] 120 120 121 121 122 -(% class="box infomessage" %) 123 -((( 124 -**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A 125 -))) 134 +(% style="color:blue" %)**Example:**(%%) AT+COMMAND1=01 03 00 00 00 01 84 0A 126 126 127 127 * The first byte : slave address code (=001~247) 137 + 128 128 * The second byte : read register value function code 139 + 129 129 * 3rd and 4th bytes: start address of register to be read 141 + 130 130 * 5th and 6th bytes: Number of registers to read 143 + 131 131 * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6. 132 132 133 133 ((( 147 + 148 + 149 + 134 134 How to parse the reading of the return command of the parameter: 135 -))) 136 136 137 -(% class="box infomessage" %) 138 -((( 139 -**Example:** RETURN1:01 03 02 08 FD 7E 05 152 +(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05 140 140 ))) 141 141 142 142 * The first byte ARD: slave address code (=001~254) 156 + 143 143 * The second byte: Return to read function code 158 + 144 144 * 3rd byte: total number of bytes 160 + 145 145 * 4th~5th bytes: register data 162 + 146 146 * The 6th and 7th bytes: CRC16 checksum 164 + 147 147 * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage. 148 148 149 -(% class="wikigeneratedid" %) 150 -((( 151 - 152 -))) 153 153 154 -=== **1.3.3 How to configure RS485-LN and parse output commands**===168 +=== 1.3.3 How to configure RS485-LN and parse output commands === 155 155 170 + 156 156 RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK. 157 157 158 158 159 -==== **1.3.3.1 via AT COMMAND :** ====174 +==== **1.3.3.1 via AT COMMAND** ==== 160 160 161 -First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct. 162 162 177 +First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct. 178 + 163 163 ((( 164 164 If the configured parameters and commands are incorrect, the return value is not obtained. 181 + 182 + 165 165 ))) 166 166 167 167 [[image:image-20220601143201-9.png]] 168 168 169 -AT COMMAND 187 +**AT COMMAND** 170 170 171 171 172 172 (% class="box infomessage" %) 173 173 ((( 174 - AT+DATACUTx 192 + (% _mstmutation="1" %)**AT+DATACUTx **(%%): This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c 175 175 ))) 176 176 177 177 a: length for the return of AT+COMMAND ... ... @@ -182,16 +182,15 @@ 182 182 183 183 [[image:image-20220601143115-8.png]] 184 184 185 -AT COMMAND 203 +**AT COMMAND** 186 186 187 187 188 188 189 189 PAYLOAD is available after the valid value is intercepted. 190 190 191 - 192 192 [[image:image-20220601143046-7.png]] 193 193 194 -AT COMMAND 211 +**AT COMMAND** 195 195 196 196 197 197 ... ... @@ -200,7 +200,7 @@ 200 200 [[image:image-20220601143519-1.png]] 201 201 202 202 ((( 203 -AT COMMAND 220 +**AT COMMAND** 204 204 ))) 205 205 206 206 ((( ... ... @@ -208,49 +208,49 @@ 208 208 ))) 209 209 210 210 ((( 211 -(% style="color: #4f81bd" %)**Example**:228 +(% style="color:blue" %)**Example**: 212 212 213 -CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1 230 +(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1 214 214 ))) 215 215 216 216 ((( 217 -RETURN1:01 03 02 00 02 39 85 00 00(return data) 234 +RETURN1: 01 03 02 00 02 39 85 00 00(return data) 218 218 ))) 219 219 220 220 ((( 221 -AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload. 238 +AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload. 222 222 223 223 224 224 ))) 225 225 226 226 ((( 227 -CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1 244 +(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1 228 228 ))) 229 229 230 230 ((( 231 -RETURN2:01 03 02 08 DC BE 1D(return data) 248 +RETURN2: 01 03 02 08 DC BE 1D(return data) 232 232 ))) 233 233 234 234 ((( 235 -AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload. 252 +AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload. 236 236 237 237 238 238 ))) 239 239 240 240 ((( 241 -CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1 258 +(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1 242 242 ))) 243 243 244 244 ((( 245 -RETURN3:01 03 04 00 00 00 44 FA 00(return data) 262 +RETURN3: 01 03 04 00 00 00 44 FA 00(return data) 246 246 ))) 247 247 248 248 ((( 249 -AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload. 266 +AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload. 250 250 ))) 251 251 252 252 ((( 253 -Payload:01 00 02 39 85 08 DC 00 00 00 44 270 +Payload: 01 00 02 39 85 08 DC 00 00 00 44 254 254 ))) 255 255 256 256 [[image:image-20220601142936-6.png]] ... ... @@ -258,8 +258,8 @@ 258 258 AT COMMAND 259 259 260 260 261 -(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.** 262 262 279 +(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.** 263 263 264 264 265 265 [[image:image-20220601143642-2.png]] ... ... @@ -267,20 +267,20 @@ 267 267 AT COMMAND 268 268 269 269 287 + 270 270 ==== **1.3.3.2 via LoRaWAN DOWNLINK** ==== 271 271 290 + 272 272 [[image:image-20220527093358-15.png]] 273 273 274 274 ((( 275 -DOWNLINK 294 +**DOWNLINK** 276 276 ))) 277 277 278 -((( 279 - 280 -))) 281 281 298 + 282 282 ((( 283 -(% style="color: #4f81bd" %)**Type Code 0xAF**300 +(% style="color:blue" %)**Type Code 0xAF** 284 284 ))) 285 285 286 286 ((( ... ... @@ -291,7 +291,7 @@ 291 291 ))) 292 292 293 293 ((( 294 -Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink. 311 +(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.** 295 295 ))) 296 296 297 297 ((( ... ... @@ -326,10 +326,9 @@ 326 326 will execute an uplink after got this command. 327 327 ))) 328 328 329 -((( 330 - 331 331 332 -(% style="color:#4f81bd" %)**Example:** 347 +((( 348 +(% style="color:blue" %)**Example:** 333 333 ))) 334 334 335 335 ((( ... ... @@ -338,35 +338,36 @@ 338 338 339 339 [[image:image-20220601144149-6.png]] 340 340 341 -DOWNLINK 357 +**DOWNLINK** 342 342 343 343 344 344 345 345 [[image:image-20220601143803-3.png]] 346 346 347 -DOWNLINK 363 +**DOWNLINK** 348 348 349 349 350 350 351 351 [[image:image-20220601144053-5.png]] 352 352 353 -DOWNLINK 369 +**DOWNLINK** 354 354 355 355 356 356 357 357 [[image:image-20220601143921-4.png]] 358 358 359 -DOWNLINK 375 +**DOWNLINK** 360 360 361 361 362 362 363 363 [[image:image-20220601142805-5.png]] 364 364 365 -DOWNLINK 366 - 381 +**DOWNLINK** 367 367 368 -=== **1.3.4 How to configure and output commands for RS485 to USB** === 369 369 384 +=== 1.3.4 How to configure and output commands for RS485 to USB === 385 + 386 + 370 370 ((( 371 371 This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN. 372 372 ))) ... ... @@ -385,17 +385,19 @@ 385 385 386 386 ((( 387 387 check digit: Even 405 + 406 + 388 388 ))) 389 389 390 390 [[image:image-20220527093708-21.png]] 391 391 392 -USB 411 +**USB** 393 393 394 394 395 395 396 396 [[image:image-20220527093747-22.png]] 397 397 398 -USB 417 +**USB** 399 399 400 400 401 401 ... ... @@ -404,20 +404,24 @@ 404 404 ))) 405 405 406 406 ((( 407 -(% style="color: #4f81bd" %)**Example:** (%%)input:01 03 00 31 00 02 95 c4426 +(% style="color:blue" %)**Example:** (%%)input:01 03 00 31 00 02 95 c4 408 408 ))) 409 409 410 410 ((( 411 411 output:01 03 04 00 00 00 42 7A 02 431 + 432 + 412 412 ))) 413 413 414 414 [[image:image-20220527093821-23.png]] 415 415 416 -USB 437 +**USB** 417 417 418 418 419 -=== **1.3.5 How to configure multiple devices and modify device addresses** === 420 420 441 +=== 1.3.5 How to configure multiple devices and modify device addresses === 442 + 443 + 421 421 If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01. 422 422 423 423 ((( ... ... @@ -429,13 +429,15 @@ 429 429 [[image:image-20220601142044-1.png]] 430 430 431 431 432 -**Example**:These two meters are examples of setting parameters and device addresses. 455 +(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses. 433 433 457 + 434 434 [[image:image-20220527093950-25.png]] 435 435 436 436 437 437 [[image:image-20220527094028-26.png]] 438 438 463 + 439 439 ((( 440 440 ((( 441 441 First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address. ... ... @@ -444,7 +444,7 @@ 444 444 445 445 ((( 446 446 ((( 447 -We can use AT+CFGDEV to set the device address. 472 +We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address. 448 448 ))) 449 449 ))) 450 450 ... ... @@ -456,14 +456,15 @@ 456 456 457 457 [[image:image-20220601142354-2.png]] 458 458 484 + 459 459 (% class="box infomessage" %) 460 460 ((( 461 461 **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1** 462 462 ))) 463 463 464 -* 01:device adaress 490 +* 01: device adaress 465 465 466 -* 10:function code 492 +* 10: function code 467 467 468 468 * 00 61:Register address 469 469 ... ... @@ -486,40 +486,68 @@ 486 486 487 487 [[image:image-20220601142607-4.png]] 488 488 489 -**PAYLOAD:01 08 DF 43 62** 490 490 516 +(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62** 517 + 491 491 * 08 DF is the valid value of the meter with device address 02. 492 492 * 43 62 is the valid value of the meter with device address 01. 493 493 521 +(% style="display:none" %) (%%) 494 494 523 + 495 495 == 1.4 Example 4: Circuit Breaker Remote Open Close == 496 496 497 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below: 498 498 527 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. 528 + 529 +The structure is like below: 530 + 499 499 [[image:image-20220527094330-30.png]] 500 500 501 -Connection 533 +**Connection** 502 502 503 -* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen 504 504 536 +* Configure Documen: [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]] 537 + 538 + 505 505 == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN == 506 506 541 + 507 507 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below: 508 508 509 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf ]] : Configure Document ForRS485-BL544 +* Configure Document For RS485-BL: [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 510 510 511 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf ]] : Configure Documentfor RS485-LN546 +* Configure Document for RS485-LN: [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]] 512 512 513 -== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN == 514 514 549 +== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN == 550 + 551 + 515 515 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below: 516 516 517 -* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf ]] : Configure Document ForRS485-LN554 +* Configure Document For RS485-LN: [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 518 518 519 -== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL == 520 520 557 +== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL == 558 + 559 + 521 521 [[image:image-20220527094556-31.png]] 522 522 562 + 523 523 Network Structure 524 524 525 525 * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]] 566 + 567 +== == 568 + 569 +== 1.8 Example 8: This sketch is supposed to test Dragino RS485-BL (Modbus master), using an Arduino UNO as a Modbus slave. == 570 + 571 +This sketch uses 4 registers: some of them can be set by Dragino with a command, another is used to store value from a DS18B20 temperature sensor, or a random generated number. All data is 16bit uint, but the sketch shows also how to represent booleans and negative numbers. 572 + 573 +In the next days I will be adding more documentation, but I think it already explains users how to build their own modbus sensor to pair with Dragino RS485-BL. 574 + 575 +This is released the code under GNU LGPL licence on Github: 576 + 577 +[[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485]] 578 + 579 +