<
From version < 57.3 >
edited by Xiaoling
on 2022/06/01 14:43
To version < 62.1 >
edited by Bei Jinggeng
on 2023/08/08 15:23
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -1,5 +1,4 @@
1 -(% class="wikigeneratedid" %)
2 - **Contents:**
1 +**Table of Contents:**
3 3  
4 4  {{toc/}}
5 5  
... ... @@ -8,73 +8,85 @@
8 8  
9 9  
10 10  
11 -= **1. Introduction** =
10 += 1. Introduction =
12 12  
12 +
13 13  This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
14 14  
15 15  
16 -== **1.1 Example 1: Connect to Leak relay and VFD** ==
16 +== 1.1 Example 1: Connect to Leak relay and VFD ==
17 17  
18 +
18 18  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
19 19  
20 -[[image:image-20220527091852-1.png]]
21 21  
22 -Connection
22 +[[image:image-20220527091852-1.png||height="547" width="994"]]
23 23  
24 +**Connection**
24 24  
25 25  
27 +
26 26  [[image:image-20220527091942-2.png]](% style="display:none" %)
27 27  
28 -Connection
30 +**Connection**
29 29  
30 30  
31 -Related documents:
33 +(% style="color:blue" %)**Related documents:**
32 32  
33 -* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure
34 -* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code.
35 +* System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
36 +
37 +* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
38 +
35 35  * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
36 36  
41 +== 1.2 Example 2: Connect to Pulse Counter ==
37 37  
38 -== **1.2 Example 2: Connect to Pulse Counter** ==
39 39  
40 40  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
41 41  
42 -[[image:image-20220527092058-3.png]]
43 43  
44 -Connection
47 +[[image:image-20220527092058-3.png||height="552" width="905"]]
45 45  
49 +**Connection**
46 46  
47 47  
48 -[[image:image-20220527092146-4.png]]
49 49  
50 -Connection
53 +[[image:image-20220527092146-4.png||height="507" width="906"]]
51 51  
55 +**Connection**
52 52  
53 -* [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] : Configure Document
57 +
58 +(% style="color:blue" %)**Related documents:**
59 +
60 +* Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]]
61 +
54 54  * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
55 55  
56 -== ==
64 +== 1.3 Example 3: Use RS485-LN with energy meters ==
57 57  
58 -== **1.3 Example3: Use RS485-LN with energy meters** ==
66 +=== 1.3.1 OverView ===
59 59  
60 -=== **1.3.1 OverView** ===
61 61  
62 62  (((
63 -**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications.
70 +(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.**
64 64  )))
65 65  
66 66  (((
67 67  This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
75 +
76 +
68 68  )))
69 69  
70 70  [[image:image-20220527092419-5.png]]
71 71  
72 -Connection1
81 +**Connection1**
73 73  
74 74  
75 75  
76 76  (((
77 -How to connect with Energy Meter:
86 +(% style="color:blue" %)**How to connect with Energy Meter:**
87 +
88 +
78 78  )))
79 79  
80 80  (((
... ... @@ -86,88 +86,96 @@
86 86  )))
87 87  
88 88  (((
89 -Power Source VIN to RS485-LN VIN+
100 +Power Source **VIN** to RS485-LN **VIN+**
90 90  )))
91 91  
92 92  (((
93 -Power Source GND to RS485-LN VIN-
104 +Power Source **GND** to RS485-LN **VIN-**
94 94  )))
95 95  
96 96  (((
97 97  Once there is power, the RS485-LN will be on.
109 +
110 +
98 98  )))
99 99  
100 100  [[image:image-20220527092514-6.png]]
101 101  
102 -Connection2
115 +**Connection2**
103 103  
104 104  
105 105  
106 106  [[image:image-20220527092555-7.png]]
107 107  
108 -Connection3
121 +**Connection3**
109 109  
110 110  
111 -=== **1.3.2 How to use the parameters of the energy meter and MODBUS commands** ===
124 +=== 1.3.2 How to use the parameters of the energy meter and MODBUS commands ===
112 112  
126 +
113 113  If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
114 114  
115 115  [[image:image-20220601143257-10.png]]
116 116  
117 117  
118 -(% class="box infomessage" %)
119 -(((
120 -**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A
121 -)))
132 +(% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
122 122  
123 123  * The first byte : slave address code (=001~247)
135 +
124 124  * The second byte : read register value function code
137 +
125 125  * 3rd and 4th bytes: start address of register to be read
139 +
126 126  * 5th and 6th bytes: Number of registers to read
141 +
127 127  * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
128 128  
129 129  (((
145 +
146 +
147 +
130 130  How to parse the reading of the return command of the parameter:
131 -)))
132 132  
133 -(% class="box infomessage" %)
134 -(((
135 -**Example:** RETURN1:01 03 02 08 FD 7E 05
150 +(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
136 136  )))
137 137  
138 138  * The first byte ARD: slave address code (=001~254)
154 +
139 139  * The second byte: Return to read function code
156 +
140 140  * 3rd byte: total number of bytes
158 +
141 141  * 4th~5th bytes: register data
160 +
142 142  * The 6th and 7th bytes: CRC16 checksum
162 +
143 143  * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage.
144 144  
145 -(% class="wikigeneratedid" %)
146 -(((
147 -
148 -)))
165 +=== 1.3.3 How to configure RS485-LN and parse output commands ===
149 149  
150 -=== **1.3.3 How to configure RS485-LN and parse output commands** ===
151 151  
152 152  RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
153 153  
154 154  
155 -==== **1.3.3.1 via AT COMMAND:** ====
171 +==== **1.3.3.1 via AT COMMAND** ====
156 156  
157 -First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct.
158 158  
174 +First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
175 +
159 159  (((
160 160  If the configured parameters and commands are incorrect, the return value is not obtained.
178 +
179 +
161 161  )))
162 162  
163 163  [[image:image-20220601143201-9.png]]
164 164  
165 -AT COMMAND
184 +**AT COMMAND**
166 166  
167 167  
168 168  (% class="box infomessage" %)
169 169  (((
170 - AT+DATACUTx : This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
189 + (% _mstmutation="1" %)**AT+DATACUTx **(%%):  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
171 171  )))
172 172  
173 173  a:  length for the return of AT+COMMAND
... ... @@ -178,16 +178,15 @@
178 178  
179 179  [[image:image-20220601143115-8.png]]
180 180  
181 -AT COMMAND
200 +**AT COMMAND**
182 182  
183 183  
184 184  
185 185  PAYLOAD is available after the valid value is intercepted.
186 186  
187 -
188 188  [[image:image-20220601143046-7.png]]
189 189  
190 -AT COMMAND
208 +**AT COMMAND**
191 191  
192 192  
193 193  
... ... @@ -196,7 +196,7 @@
196 196  [[image:image-20220601143519-1.png]]
197 197  
198 198  (((
199 -AT COMMAND
217 +**AT COMMAND**
200 200  )))
201 201  
202 202  (((
... ... @@ -204,49 +204,49 @@
204 204  )))
205 205  
206 206  (((
207 -(% style="color:#4f81bd" %)**Example**:
225 +(% style="color:blue" %)**Example**:
208 208  
209 -CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1
227 +(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
210 210  )))
211 211  
212 212  (((
213 -RETURN1:01 03 02 00 02 39 85 00 00(return data)
231 +RETURN1: 01 03 02 00 02 39 85 00 00(return data)
214 214  )))
215 215  
216 216  (((
217 -AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
235 +AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
218 218  
219 219  
220 220  )))
221 221  
222 222  (((
223 -CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1
241 +(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
224 224  )))
225 225  
226 226  (((
227 -RETURN2:01 03 02 08 DC BE 1D(return data)
245 +RETURN2: 01 03 02 08 DC BE 1D(return data)
228 228  )))
229 229  
230 230  (((
231 -AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
249 +AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
232 232  
233 233  
234 234  )))
235 235  
236 236  (((
237 -CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
255 +(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
238 238  )))
239 239  
240 240  (((
241 -RETURN3:01 03 04 00 00 00 44 FA 00(return data)
259 +RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
242 242  )))
243 243  
244 244  (((
245 -AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
263 +AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
246 246  )))
247 247  
248 248  (((
249 -Payload:01 00 02 39 85 08 DC 00 00 00 44
267 +Payload: 01 00 02 39 85 08 DC 00 00 00 44
250 250  )))
251 251  
252 252  [[image:image-20220601142936-6.png]]
... ... @@ -254,8 +254,8 @@
254 254  AT COMMAND
255 255  
256 256  
257 -(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
258 258  
276 +(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
259 259  
260 260  
261 261  [[image:image-20220601143642-2.png]]
... ... @@ -263,20 +263,20 @@
263 263  AT COMMAND
264 264  
265 265  
284 +
266 266  ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
267 267  
287 +
268 268  [[image:image-20220527093358-15.png]]
269 269  
270 270  (((
271 -DOWNLINK
291 +**DOWNLINK**
272 272  )))
273 273  
274 -(((
275 -
276 -)))
277 277  
295 +
278 278  (((
279 -(% style="color:#4f81bd" %)**Type Code 0xAF**
297 +(% style="color:blue" %)**Type Code 0xAF**
280 280  )))
281 281  
282 282  (((
... ... @@ -287,7 +287,7 @@
287 287  )))
288 288  
289 289  (((
290 -Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
308 +(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
291 291  )))
292 292  
293 293  (((
... ... @@ -322,10 +322,9 @@
322 322  will execute an uplink after got this command.
323 323  )))
324 324  
325 -(((
326 -
327 327  
328 -(% style="color:#4f81bd" %)**Example:**
344 +(((
345 +(% style="color:blue" %)**Example:**
329 329  )))
330 330  
331 331  (((
... ... @@ -334,35 +334,36 @@
334 334  
335 335  [[image:image-20220601144149-6.png]]
336 336  
337 -DOWNLINK
354 +**DOWNLINK**
338 338  
339 339  
340 340  
341 341  [[image:image-20220601143803-3.png]]
342 342  
343 -DOWNLINK
360 +**DOWNLINK**
344 344  
345 345  
346 346  
347 347  [[image:image-20220601144053-5.png]]
348 348  
349 -DOWNLINK
366 +**DOWNLINK**
350 350  
351 351  
352 352  
353 353  [[image:image-20220601143921-4.png]]
354 354  
355 -DOWNLINK
372 +**DOWNLINK**
356 356  
357 357  
358 358  
359 359  [[image:image-20220601142805-5.png]]
360 360  
361 -DOWNLINK
362 -
378 +**DOWNLINK**
363 363  
364 -=== **1.3.4 How to configure and output commands for RS485 to USB** ===
365 365  
381 +=== 1.3.4 How to configure and output commands for RS485 to USB ===
382 +
383 +
366 366  (((
367 367  This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
368 368  )))
... ... @@ -381,17 +381,19 @@
381 381  
382 382  (((
383 383  check digit: Even
402 +
403 +
384 384  )))
385 385  
386 386  [[image:image-20220527093708-21.png]]
387 387  
388 -USB
408 +**USB**
389 389  
390 390  
391 391  
392 392  [[image:image-20220527093747-22.png]]
393 393  
394 -USB
414 +**USB**
395 395  
396 396  
397 397  
... ... @@ -400,20 +400,24 @@
400 400  )))
401 401  
402 402  (((
403 -(% style="color:#4f81bd" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
423 +(% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
404 404  )))
405 405  
406 406  (((
407 407   output:01 03 04 00 00 00 42 7A 02
428 +
429 +
408 408  )))
409 409  
410 410  [[image:image-20220527093821-23.png]]
411 411  
412 -USB
434 +**USB**
413 413  
414 414  
415 -=== **1.3.5 How to configure multiple devices and modify device addresses** ===
416 416  
438 +=== 1.3.5 How to configure multiple devices and modify device addresses ===
439 +
440 +
417 417  If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
418 418  
419 419  (((
... ... @@ -425,12 +425,15 @@
425 425  [[image:image-20220601142044-1.png]]
426 426  
427 427  
428 -**Example**:These two meters are examples of setting parameters and device addresses.
452 +(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
429 429  
454 +
430 430  [[image:image-20220527093950-25.png]]
431 431  
457 +
432 432  [[image:image-20220527094028-26.png]]
433 433  
460 +
434 434  (((
435 435  (((
436 436  First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
... ... @@ -439,7 +439,7 @@
439 439  
440 440  (((
441 441  (((
442 -We can use AT+CFGDEV to set the device address.
469 +We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
443 443  )))
444 444  )))
445 445  
... ... @@ -451,14 +451,15 @@
451 451  
452 452  [[image:image-20220601142354-2.png]]
453 453  
481 +
454 454  (% class="box infomessage" %)
455 455  (((
456 456  **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
457 457  )))
458 458  
459 -* 01:device adaress
487 +* 01: device adaress
460 460  
461 -* 10:function code
489 +* 10: function code
462 462  
463 463  * 00 61:Register address
464 464  
... ... @@ -481,43 +481,63 @@
481 481  
482 482  [[image:image-20220601142607-4.png]]
483 483  
484 -**PAYLOAD:01 08 DF 43 62**
485 485  
513 +(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
514 +
486 486  * 08 DF is the valid value of the meter with device address 02.
487 487  * 43 62 is the valid value of the meter with device address 01.
488 488  
518 +(% style="display:none" %) (%%)
489 489  
490 490  
491 491  == 1.4 Example 4: Circuit Breaker Remote Open Close ==
492 492  
493 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below:
494 494  
524 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
525 +
526 +The structure is like below:
527 +
495 495  [[image:image-20220527094330-30.png]]
496 496  
497 -Connection
530 +**Connection**
498 498  
499 -* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen
500 500  
533 +* Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]]
534 +
501 501  == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
502 502  
537 +
503 503  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
504 504  
505 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf]] : Configure Document For RS485-BL
540 +* Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
506 506  
507 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf]] : Configure Document for RS485-LN
542 +* Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]]
508 508  
544 +== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
509 509  
510 -== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN ==
511 511  
512 512  This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
513 513  
514 -* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf]] : Configure Document For RS485-LN
549 +* Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
515 515  
551 +== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
516 516  
517 -== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL ==
518 518  
519 519  [[image:image-20220527094556-31.png]]
520 520  
556 +
521 521  Network Structure
522 522  
523 523  * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]
560 +
561 +== 1.8  Example 8: This sketch is supposed to test Dragino RS485-BL (Modbus master), using an Arduino UNO as a Modbus slave. ==
562 +
563 +This sketch uses 4 registers: some of them can be set by Dragino with a command, another is used to store value from a DS18B20 temperature sensor, or a random generated number. All data is 16bit uint, but the sketch shows also how to represent booleans and negative numbers.
564 +
565 +In the next days I will be adding more documentation, but I think it already explains users how to build their own modbus sensor to pair with Dragino RS485-BL.
566 +
567 +This is released the code under GNU LGPL licence on Github:
568 +
569 +[[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485]]
570 +
571 +
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0