Last modified by Karry Zhuang on 2024/07/11 11:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% class="wikigeneratedid" %) 2 - **Contents:** 1 +**Table of Contents:** 3 3 4 4 {{toc/}} 5 5 ... ... @@ -8,73 +8,85 @@ 8 8 9 9 10 10 11 -= **1. Introduction**=10 += 1. Introduction = 12 12 12 + 13 13 This article provide the examples for RS485-LN to connect to different type of RS485 sensors. 14 14 15 15 16 -== **1.1 Example 1: Connect to Leak relay and VFD**==16 +== 1.1 Example 1: Connect to Leak relay and VFD == 17 17 18 + 18 18 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below: 19 19 20 -[[image:image-20220527091852-1.png]] 21 21 22 - Connection22 +[[image:image-20220527091852-1.png||height="547" width="994"]] 23 23 24 +**Connection** 24 24 25 25 27 + 26 26 [[image:image-20220527091942-2.png]](% style="display:none" %) 27 27 28 -Connection 30 +**Connection** 29 29 30 30 31 -Related documents: 33 +(% style="color:blue" %)**Related documents:** 32 32 33 -* [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : System Structure 34 -* [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/]] : Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code. 35 +* System Structure: [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 36 + 37 +* Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code: [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 38 + 35 35 * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]] 36 36 41 +== 1.2 Example 2: Connect to Pulse Counter == 37 37 38 -== **1.2 Example 2: Connect to Pulse Counter** == 39 39 40 40 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below: 41 41 42 -[[image:image-20220527092058-3.png]] 43 43 44 - Connection47 +[[image:image-20220527092058-3.png||height="552" width="905"]] 45 45 49 +**Connection** 46 46 47 47 48 -[[image:image-20220527092146-4.png]] 49 49 50 - Connection53 +[[image:image-20220527092146-4.png||height="507" width="906"]] 51 51 55 +**Connection** 52 52 53 -* [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]] : Configure Document 57 + 58 +(% style="color:blue" %)**Related documents:** 59 + 60 +* Configure Document: [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]] 61 + 54 54 * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]] 55 55 56 -== == 64 +== 1.3 Example 3: Use RS485-LN with energy meters == 57 57 58 -== **1.3Example3: UseRS485-LNwithenergy meters**==66 +=== 1.3.1 OverView === 59 59 60 -=== **1.3.1 OverView** === 61 61 62 62 ((( 63 -**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications. 70 +(% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.** 64 64 ))) 65 65 66 66 ((( 67 67 This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter. 75 + 76 + 68 68 ))) 69 69 70 70 [[image:image-20220527092419-5.png]] 71 71 72 -Connection1 81 +**Connection1** 73 73 74 74 75 75 76 76 ((( 77 -How to connect with Energy Meter: 86 +(% style="color:blue" %)**How to connect with Energy Meter:** 87 + 88 + 78 78 ))) 79 79 80 80 ((( ... ... @@ -86,88 +86,96 @@ 86 86 ))) 87 87 88 88 ((( 89 -Power Source VIN to RS485-LN VIN+ 100 +Power Source **VIN** to RS485-LN **VIN+** 90 90 ))) 91 91 92 92 ((( 93 -Power Source GND to RS485-LN VIN- 104 +Power Source **GND** to RS485-LN **VIN-** 94 94 ))) 95 95 96 96 ((( 97 97 Once there is power, the RS485-LN will be on. 109 + 110 + 98 98 ))) 99 99 100 100 [[image:image-20220527092514-6.png]] 101 101 102 -Connection2 115 +**Connection2** 103 103 104 104 105 105 106 106 [[image:image-20220527092555-7.png]] 107 107 108 -Connection3 121 +**Connection3** 109 109 110 110 111 -=== **1.3.2 How to use the parameters of the energy meter and MODBUS commands**===124 +=== 1.3.2 How to use the parameters of the energy meter and MODBUS commands === 112 112 126 + 113 113 If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter. 114 114 115 115 [[image:image-20220601143257-10.png]] 116 116 117 117 118 -(% class="box infomessage" %) 119 -((( 120 -**Example:** AT+COMMAND1=01 03 00 00 00 01 84 0A 121 -))) 132 +(% style="color:blue" %)**Example:**(%%) AT+COMMAND1=01 03 00 00 00 01 84 0A 122 122 123 123 * The first byte : slave address code (=001~247) 135 + 124 124 * The second byte : read register value function code 137 + 125 125 * 3rd and 4th bytes: start address of register to be read 139 + 126 126 * 5th and 6th bytes: Number of registers to read 141 + 127 127 * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6. 128 128 129 129 ((( 145 + 146 + 147 + 130 130 How to parse the reading of the return command of the parameter: 131 -))) 132 132 133 -(% class="box infomessage" %) 134 -((( 135 -**Example:** RETURN1:01 03 02 08 FD 7E 05 150 +(% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05 136 136 ))) 137 137 138 138 * The first byte ARD: slave address code (=001~254) 154 + 139 139 * The second byte: Return to read function code 156 + 140 140 * 3rd byte: total number of bytes 158 + 141 141 * 4th~5th bytes: register data 160 + 142 142 * The 6th and 7th bytes: CRC16 checksum 162 + 143 143 * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage. 144 144 145 -(% class="wikigeneratedid" %) 146 -((( 147 - 148 -))) 165 +=== 1.3.3 How to configure RS485-LN and parse output commands === 149 149 150 -=== **1.3.3 How to configure RS485-LN and parse output commands** === 151 151 152 152 RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK. 153 153 154 154 155 -==== **1.3.3.1 via AT COMMAND :** ====171 +==== **1.3.3.1 via AT COMMAND** ==== 156 156 157 -First, we can use **AT+CFGDEV** to get the return value, and we can also judge whether the input parameters are correct. 158 158 174 +First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct. 175 + 159 159 ((( 160 160 If the configured parameters and commands are incorrect, the return value is not obtained. 178 + 179 + 161 161 ))) 162 162 163 163 [[image:image-20220601143201-9.png]] 164 164 165 -AT COMMAND 184 +**AT COMMAND** 166 166 167 167 168 168 (% class="box infomessage" %) 169 169 ((( 170 - AT+DATACUTx 189 + (% _mstmutation="1" %)**AT+DATACUTx **(%%): This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c 171 171 ))) 172 172 173 173 a: length for the return of AT+COMMAND ... ... @@ -178,16 +178,15 @@ 178 178 179 179 [[image:image-20220601143115-8.png]] 180 180 181 -AT COMMAND 200 +**AT COMMAND** 182 182 183 183 184 184 185 185 PAYLOAD is available after the valid value is intercepted. 186 186 187 - 188 188 [[image:image-20220601143046-7.png]] 189 189 190 -AT COMMAND 208 +**AT COMMAND** 191 191 192 192 193 193 ... ... @@ -196,7 +196,7 @@ 196 196 [[image:image-20220601143519-1.png]] 197 197 198 198 ((( 199 -AT COMMAND 217 +**AT COMMAND** 200 200 ))) 201 201 202 202 ((( ... ... @@ -204,49 +204,49 @@ 204 204 ))) 205 205 206 206 ((( 207 -(% style="color: #4f81bd" %)**Example**:225 +(% style="color:blue" %)**Example**: 208 208 209 -CMD1:Read current data with MODBUS command. address:0x03 AT+COMMAND1= 01 03 00 03 00 01,1 227 +(% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1 210 210 ))) 211 211 212 212 ((( 213 -RETURN1:01 03 02 00 02 39 85 00 00(return data) 231 +RETURN1: 01 03 02 00 02 39 85 00 00(return data) 214 214 ))) 215 215 216 216 ((( 217 -AT+DATACUT1:9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload. 235 +AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload. 218 218 219 219 220 220 ))) 221 221 222 222 ((( 223 -CMD2:Read voltage data with MODBUS command. address:0x00 AT+COMMAND2= 01 03 00 00 00 01,1 241 +(% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1 224 224 ))) 225 225 226 226 ((( 227 -RETURN2:01 03 02 08 DC BE 1D(return data) 245 +RETURN2: 01 03 02 08 DC BE 1D(return data) 228 228 ))) 229 229 230 230 ((( 231 -AT+DATACUT2:7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload. 249 +AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload. 232 232 233 233 234 234 ))) 235 235 236 236 ((( 237 -CMD3:Read total active energy data with MODBUS command. address:0x0031 AT+COMMAND3= 01 03 00 31 00 02,1 255 +(% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1 238 238 ))) 239 239 240 240 ((( 241 -RETURN3:01 03 04 00 00 00 44 FA 00(return data) 259 +RETURN3: 01 03 04 00 00 00 44 FA 00(return data) 242 242 ))) 243 243 244 244 ((( 245 -AT+DATACUT3:9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload. 263 +AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload. 246 246 ))) 247 247 248 248 ((( 249 -Payload:01 00 02 39 85 08 DC 00 00 00 44 267 +Payload: 01 00 02 39 85 08 DC 00 00 00 44 250 250 ))) 251 251 252 252 [[image:image-20220601142936-6.png]] ... ... @@ -254,8 +254,8 @@ 254 254 AT COMMAND 255 255 256 256 257 -(% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.** 258 258 276 +(% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.** 259 259 260 260 261 261 [[image:image-20220601143642-2.png]] ... ... @@ -263,20 +263,20 @@ 263 263 AT COMMAND 264 264 265 265 284 + 266 266 ==== **1.3.3.2 via LoRaWAN DOWNLINK** ==== 267 267 287 + 268 268 [[image:image-20220527093358-15.png]] 269 269 270 270 ((( 271 -DOWNLINK 291 +**DOWNLINK** 272 272 ))) 273 273 274 -((( 275 - 276 -))) 277 277 295 + 278 278 ((( 279 -(% style="color: #4f81bd" %)**Type Code 0xAF**297 +(% style="color:blue" %)**Type Code 0xAF** 280 280 ))) 281 281 282 282 ((( ... ... @@ -287,7 +287,7 @@ 287 287 ))) 288 288 289 289 ((( 290 -Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink. 308 +(% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.** 291 291 ))) 292 292 293 293 ((( ... ... @@ -322,10 +322,9 @@ 322 322 will execute an uplink after got this command. 323 323 ))) 324 324 325 -((( 326 - 327 327 328 -(% style="color:#4f81bd" %)**Example:** 344 +((( 345 +(% style="color:blue" %)**Example:** 329 329 ))) 330 330 331 331 ((( ... ... @@ -332,37 +332,38 @@ 332 332 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1 333 333 ))) 334 334 335 -[[image:image-20220 527093430-16.png]]352 +[[image:image-20220601144149-6.png]] 336 336 337 -DOWNLINK 354 +**DOWNLINK** 338 338 339 339 340 340 341 341 [[image:image-20220601143803-3.png]] 342 342 343 -DOWNLINK 360 +**DOWNLINK** 344 344 345 345 346 346 347 -[[image:image-20220 527093530-18.png]]364 +[[image:image-20220601144053-5.png]] 348 348 349 -DOWNLINK 366 +**DOWNLINK** 350 350 351 351 352 352 353 -[[image:image-20220 527093607-19.png]]370 +[[image:image-20220601143921-4.png]] 354 354 355 -DOWNLINK 372 +**DOWNLINK** 356 356 357 357 358 358 359 359 [[image:image-20220601142805-5.png]] 360 360 361 -DOWNLINK 362 - 378 +**DOWNLINK** 363 363 364 -=== **1.3.4 How to configure and output commands for RS485 to USB** === 365 365 381 +=== 1.3.4 How to configure and output commands for RS485 to USB === 382 + 383 + 366 366 ((( 367 367 This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN. 368 368 ))) ... ... @@ -381,17 +381,19 @@ 381 381 382 382 ((( 383 383 check digit: Even 402 + 403 + 384 384 ))) 385 385 386 386 [[image:image-20220527093708-21.png]] 387 387 388 -USB 408 +**USB** 389 389 390 390 391 391 392 392 [[image:image-20220527093747-22.png]] 393 393 394 -USB 414 +**USB** 395 395 396 396 397 397 ... ... @@ -400,20 +400,24 @@ 400 400 ))) 401 401 402 402 ((( 403 -(% style="color: #4f81bd" %)**Example:** (%%)input:01 03 00 31 00 02 95 c4423 +(% style="color:blue" %)**Example:** (%%)input:01 03 00 31 00 02 95 c4 404 404 ))) 405 405 406 406 ((( 407 407 output:01 03 04 00 00 00 42 7A 02 428 + 429 + 408 408 ))) 409 409 410 410 [[image:image-20220527093821-23.png]] 411 411 412 -USB 434 +**USB** 413 413 414 414 415 -=== **1.3.5 How to configure multiple devices and modify device addresses** === 416 416 438 +=== 1.3.5 How to configure multiple devices and modify device addresses === 439 + 440 + 417 417 If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01. 418 418 419 419 ((( ... ... @@ -425,12 +425,15 @@ 425 425 [[image:image-20220601142044-1.png]] 426 426 427 427 428 -**Example**:These two meters are examples of setting parameters and device addresses. 452 +(% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses. 429 429 454 + 430 430 [[image:image-20220527093950-25.png]] 431 431 457 + 432 432 [[image:image-20220527094028-26.png]] 433 433 460 + 434 434 ((( 435 435 ((( 436 436 First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address. ... ... @@ -439,7 +439,7 @@ 439 439 440 440 ((( 441 441 ((( 442 -We can use AT+CFGDEV to set the device address. 469 +We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address. 443 443 ))) 444 444 ))) 445 445 ... ... @@ -451,14 +451,15 @@ 451 451 452 452 [[image:image-20220601142354-2.png]] 453 453 481 + 454 454 (% class="box infomessage" %) 455 455 ((( 456 456 **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1** 457 457 ))) 458 458 459 -* 01:device adaress 487 +* 01: device adaress 460 460 461 -* 10:function code 489 +* 10: function code 462 462 463 463 * 00 61:Register address 464 464 ... ... @@ -481,41 +481,63 @@ 481 481 482 482 [[image:image-20220601142607-4.png]] 483 483 484 -**PAYLOAD:01 08 DF 43 62** 485 485 513 +(% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62** 514 + 486 486 * 08 DF is the valid value of the meter with device address 02. 487 487 * 43 62 is the valid value of the meter with device address 01. 488 488 518 +(% style="display:none" %) (%%) 519 + 520 + 489 489 == 1.4 Example 4: Circuit Breaker Remote Open Close == 490 490 491 -This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. The structure is like below: 492 492 524 +This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology. 525 + 526 +The structure is like below: 527 + 493 493 [[image:image-20220527094330-30.png]] 494 494 495 -Connection 530 +**Connection** 496 496 497 -* [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]] : Configure Documen 498 498 533 +* Configure Documen: [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]] 534 + 499 499 == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN == 500 500 537 + 501 501 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below: 502 502 503 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf ]] : Configure Document ForRS485-BL540 +* Configure Document For RS485-BL: [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 504 504 505 -* [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf ]] : Configure Documentfor RS485-LN542 +* Configure Document for RS485-LN: [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]] 506 506 544 +== 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN == 507 507 508 -== 1.6 Example 6:CEM C31 485-T1-MID Energy Meter with RS485-LN == 509 509 510 510 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below: 511 511 512 -* [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf ]] : Configure Document ForRS485-LN549 +* Configure Document For RS485-LN: [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]] 513 513 551 +== 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL == 514 514 515 -== 1.7 Example 7:Schneider Electric PLC M221 with RS485-BL == 516 516 517 517 [[image:image-20220527094556-31.png]] 518 518 556 + 519 519 Network Structure 520 520 521 521 * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]] 560 + 561 +== 1.8 Example 8: This sketch is supposed to test Dragino RS485-BL (Modbus master), using an Arduino UNO as a Modbus slave. == 562 + 563 +This sketch uses 4 registers: some of them can be set by Dragino with a command, another is used to store value from a DS18B20 temperature sensor, or a random generated number. All data is 16bit uint, but the sketch shows also how to represent booleans and negative numbers. 564 + 565 +In the next days I will be adding more documentation, but I think it already explains users how to build their own modbus sensor to pair with Dragino RS485-BL. 566 + 567 +This is released the code under GNU LGPL licence on Github: 568 + 569 +[[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485]] 570 + 571 +
- image-20220601143921-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +29.2 KB - Content
- image-20220601144053-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +17.1 KB - Content
- image-20220601144149-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +17.4 KB - Content